Documentation

Mathlib.Algebra.Category.ModuleCat.Sheaf.Quasicoherent

Quasicoherent sheaves #

A sheaf of modules is quasi-coherent if it admits locally a presentation as the cokernel of a morphism between coproducts of copies of the sheaf of rings. When these coproducts are finite, we say that the sheaf is of finite presentation.

References #

A global presentation of a sheaf of modules M consists of a family generators.s of sections s which generate M, and a family of sections which generate the kernel of the morphism generators.π : free (generators.I) ⟶ M.

Instances For
    structure SheafOfModules.QuasicoherentData {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} (M : SheafOfModules R) [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] :
    Type (max (max (u + 1) (u' + 1)) v')

    This structure contains the data of a family of objects X i which cover the terminal object, and of a presentation of M.over (X i) for all i.

    • I : Type u'

      the index type of the covering

    • X : self.IC

      a family of objects which cover the terminal object

    • coversTop : J.CoversTop self.X
    • presentation : (i : self.I) → (M.over (self.X i)).Presentation

      a presentation of the sheaf of modules M.over (X i) for any i : I

    Instances For
      theorem SheafOfModules.QuasicoherentData.coversTop {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} {M : SheafOfModules R} [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] (self : M.QuasicoherentData) :
      J.CoversTop self.X
      def SheafOfModules.QuasicoherentData.localGeneratorsData {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} {M : SheafOfModules R} [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] (q : M.QuasicoherentData) :
      M.LocalGeneratorsData

      If M is quasicoherent, it is locally generated by sections.

      Equations
      • q.localGeneratorsData = { I := q.I, X := q.X, coversTop := , generators := fun (i : q.I) => (q.presentation i).generators }
      Instances For
        @[simp]
        theorem SheafOfModules.QuasicoherentData.localGeneratorsData_X {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} {M : SheafOfModules R} [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] (q : M.QuasicoherentData) :
        ∀ (a : q.I), q.localGeneratorsData.X a = q.X a
        @[simp]
        theorem SheafOfModules.QuasicoherentData.localGeneratorsData_I {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} {M : SheafOfModules R} [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] (q : M.QuasicoherentData) :
        q.localGeneratorsData.I = q.I
        @[simp]
        theorem SheafOfModules.QuasicoherentData.localGeneratorsData_generators {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} {M : SheafOfModules R} [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] (q : M.QuasicoherentData) (i : q.I) :
        q.localGeneratorsData.generators i = (q.presentation i).generators
        class SheafOfModules.IsQuasicoherent {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} (M : SheafOfModules R) [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] :

        A sheaf of modules is quasi-coherent if it is locally the cokernel of a morphism between coproducts of copies of the sheaf of rings.

        • nonempty_quasicoherentData : Nonempty M.QuasicoherentData
        Instances
          theorem SheafOfModules.IsQuasicoherent.nonempty_quasicoherentData {C : Type u'} :
          ∀ {inst : CategoryTheory.Category.{v', u'} C} {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} {M : SheafOfModules R} {inst_1 : ∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)} {inst_2 : ∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp} {inst_3 : ∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp} [self : M.IsQuasicoherent], Nonempty M.QuasicoherentData
          class SheafOfModules.IsFinitePresentation {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} (M : SheafOfModules R) [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] :

          A sheaf of modules is finitely presented if it is locally the cokernel of a morphism between coproducts of finitely many copies of the sheaf of rings..

          • exists_quasicoherentData : ∃ (σ : M.QuasicoherentData), ∀ (i : σ.I), Finite (σ.presentation i).generators.I Finite (σ.presentation i).relations.I
          Instances
            theorem SheafOfModules.IsFinitePresentation.exists_quasicoherentData {C : Type u'} :
            ∀ {inst : CategoryTheory.Category.{v', u'} C} {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} {M : SheafOfModules R} {inst_1 : ∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)} {inst_2 : ∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp} {inst_3 : ∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp} [self : M.IsFinitePresentation], ∃ (σ : M.QuasicoherentData), ∀ (i : σ.I), Finite (σ.presentation i).generators.I Finite (σ.presentation i).relations.I
            noncomputable def SheafOfModules.quasicoherentDataOfIsFinitePresentation {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} (M : SheafOfModules R) [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] [h : M.IsFinitePresentation] :
            M.QuasicoherentData

            A choice of local presentations when M is a sheaf of modules of finite presentation.

            Equations
            • M.quasicoherentDataOfIsFinitePresentation = .choose
            Instances For
              instance SheafOfModules.instFiniteIOverXQuasicoherentDataOfIsFinitePresentationGeneratorsPresentation {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} (M : SheafOfModules R) [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] [h : M.IsFinitePresentation] (i : M.quasicoherentDataOfIsFinitePresentation.I) :
              Finite (M.quasicoherentDataOfIsFinitePresentation.presentation i).generators.I
              Equations
              • =
              instance SheafOfModules.instFiniteIOverXQuasicoherentDataOfIsFinitePresentationRelationsPresentation {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} (M : SheafOfModules R) [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] [h : M.IsFinitePresentation] (i : M.quasicoherentDataOfIsFinitePresentation.I) :
              Finite (M.quasicoherentDataOfIsFinitePresentation.presentation i).relations.I
              Equations
              • =
              instance SheafOfModules.instIsFiniteTypeOfIsFinitePresentation {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} (M : SheafOfModules R) [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] [∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp] [M.IsFinitePresentation] :
              M.IsFiniteType
              Equations
              • =