Documentation

Mathlib.Algebra.Category.Grp.ForgetCorepresentable

The forget functor is corepresentable #

It is shown that the forget functor AddCommGrp.{u} ⥤ Type u is corepresentable by ULift. Similar results are obtained for the variants CommGrp, AddGrp and Grp.

The equivalence (Multiplicative ℤ →* α) ≃ α for any group α.

Equations
Instances For
    @[simp]
    theorem MonoidHom.fromMultiplicativeIntEquiv_apply (α : Type u) [Group α] (φ : Multiplicative →* α) :
    (MonoidHom.fromMultiplicativeIntEquiv α) φ = φ (Multiplicative.ofAdd 1)

    The equivalence (ULift (Multiplicative ℤ) →* α) ≃ α for any group α.

    Equations
    Instances For
      @[simp]
      @[simp]
      theorem MonoidHom.fromULiftMultiplicativeIntEquiv_symm_apply_apply (α : Type u) [Group α] (a✝ : α) (a✝¹ : ULift.{u, 0} (Multiplicative )) :
      ((MonoidHom.fromULiftMultiplicativeIntEquiv α).symm a✝) a✝¹ = a✝ ^ Multiplicative.toAdd (MulEquiv.ulift a✝¹)
      def AddMonoidHom.fromIntEquiv (α : Type u) [AddGroup α] :
      ( →+ α) α

      The equivalence (ℤ →+ α) ≃ α for any additive group α.

      Equations
      Instances For
        @[simp]
        @[simp]
        theorem AddMonoidHom.fromIntEquiv_apply (α : Type u) [AddGroup α] (φ : →+ α) :

        The equivalence (ULift ℤ →+ α) ≃ α for any additive group α.

        Equations
        Instances For
          @[simp]
          theorem AddMonoidHom.fromULiftIntEquiv_symm_apply_apply (α : Type u) [AddGroup α] (a✝ : α) (a✝¹ : ULift.{u, 0} ) :
          ((AddMonoidHom.fromULiftIntEquiv α).symm a✝) a✝¹ = AddEquiv.ulift a✝¹ a✝