Cardinality of algebraic numbers #
In this file, we prove variants of the following result: the cardinality of algebraic numbers under
an R-algebra is at most #R[X] * ℵ₀
.
Although this can be used to prove that real or complex transcendental numbers exist, a more direct
proof is given by Liouville.transcendental
.
theorem
Algebraic.infinite_of_charZero
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[IsDomain R]
[Ring A]
[Algebra R A]
[CharZero A]
:
{x : A | IsAlgebraic R x}.Infinite
theorem
Algebraic.aleph0_le_cardinal_mk_of_charZero
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[IsDomain R]
[Ring A]
[Algebra R A]
[CharZero A]
:
Cardinal.aleph0 ≤ Cardinal.mk { x : A // IsAlgebraic R x }
theorem
Algebraic.cardinal_mk_lift_le_mul
(R : Type u)
(A : Type v)
[CommRing R]
[CommRing A]
[IsDomain A]
[Algebra R A]
[NoZeroSMulDivisors R A]
:
Cardinal.lift.{u, v} (Cardinal.mk { x : A // IsAlgebraic R x }) ≤ Cardinal.lift.{v, u} (Cardinal.mk (Polynomial R)) * Cardinal.aleph0
theorem
Algebraic.cardinal_mk_lift_le_max
(R : Type u)
(A : Type v)
[CommRing R]
[CommRing A]
[IsDomain A]
[Algebra R A]
[NoZeroSMulDivisors R A]
:
Cardinal.lift.{u, v} (Cardinal.mk { x : A // IsAlgebraic R x }) ≤ max (Cardinal.lift.{v, u} (Cardinal.mk R)) Cardinal.aleph0
@[simp]
theorem
Algebraic.cardinal_mk_lift_of_infinite
(R : Type u)
(A : Type v)
[CommRing R]
[CommRing A]
[IsDomain A]
[Algebra R A]
[NoZeroSMulDivisors R A]
[Infinite R]
:
Cardinal.lift.{u, v} (Cardinal.mk { x : A // IsAlgebraic R x }) = Cardinal.lift.{v, u} (Cardinal.mk R)
@[simp]
theorem
Algebraic.countable
(R : Type u)
(A : Type v)
[CommRing R]
[CommRing A]
[IsDomain A]
[Algebra R A]
[NoZeroSMulDivisors R A]
[Countable R]
:
{x : A | IsAlgebraic R x}.Countable
@[simp]
theorem
Algebraic.cardinal_mk_of_countable_of_charZero
(R : Type u)
(A : Type v)
[CommRing R]
[CommRing A]
[IsDomain A]
[Algebra R A]
[NoZeroSMulDivisors R A]
[Countable R]
[CharZero A]
[IsDomain R]
:
Cardinal.mk { x : A // IsAlgebraic R x } = Cardinal.aleph0
theorem
Algebraic.cardinal_mk_le_mul
(R : Type u)
(A : Type u)
[CommRing R]
[CommRing A]
[IsDomain A]
[Algebra R A]
[NoZeroSMulDivisors R A]
:
Cardinal.mk { x : A // IsAlgebraic R x } ≤ Cardinal.mk (Polynomial R) * Cardinal.aleph0
theorem
Algebraic.cardinal_mk_le_max
(R : Type u)
(A : Type u)
[CommRing R]
[CommRing A]
[IsDomain A]
[Algebra R A]
[NoZeroSMulDivisors R A]
:
Cardinal.mk { x : A // IsAlgebraic R x } ≤ max (Cardinal.mk R) Cardinal.aleph0
@[simp]
theorem
Algebraic.cardinal_mk_of_infinite
(R : Type u)
(A : Type u)
[CommRing R]
[CommRing A]
[IsDomain A]
[Algebra R A]
[NoZeroSMulDivisors R A]
[Infinite R]
:
Cardinal.mk { x : A // IsAlgebraic R x } = Cardinal.mk R