Equivalences conjugating (· + a)
to (· + b)
#
In this file we define AddConstEquiv G H a b
(notation: G ≃+c[a, b] H
)
to be the type of equivalences such that ∀ x, f (x + a) = f x + b
.
We also define the corresponding typeclass and prove some basic properties.
An equivalence between G
and H
conjugating (· + a)
to (· + b)
.
- toFun : G → H
- invFun : H → G
- left_inv : Function.LeftInverse self.invFun self.toFun
- right_inv : Function.RightInverse self.invFun self.toFun
An
AddConstMap
satisfiesf (x + a) = f x + b
. Usemap_add_const
instead.
Instances For
Interpret an AddConstEquiv
as an AddConstMap
.
Equations
- self.toAddConstMap = { toFun := self.toFun, map_add_const' := ⋯ }
Instances For
An equivalence between G
and H
conjugating (· + a)
to (· + b)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- AddConstEquiv.instEquivLike = { coe := fun (f : AddConstEquiv G H a b) => ⇑f.toEquiv, inv := fun (f : AddConstEquiv G H a b) => ⇑f.symm, left_inv := ⋯, right_inv := ⋯, coe_injective' := ⋯ }
Equations
- ⋯ = ⋯
Inverse map of an AddConstEquiv
, as an AddConstEquiv
.
Equations
- e.symm = { toEquiv := e.symm, map_add_const' := ⋯ }
Instances For
A custom projection for simps
.
Equations
- AddConstEquiv.Simps.symm_apply e = ⇑e.symm
Instances For
The identity map as an AddConstEquiv
.
Equations
- AddConstEquiv.refl a = { toEquiv := Equiv.refl G, map_add_const' := ⋯ }
Instances For
Composition of AddConstEquiv
s, as an AddConstEquiv
.
Equations
- e₁.trans e₂ = { toEquiv := e₁.trans e₂.toEquiv, map_add_const' := ⋯ }
Instances For
Equations
- AddConstEquiv.instOne = { one := AddConstEquiv.refl a }
Equations
- AddConstEquiv.instMul = { mul := fun (f g : AddConstEquiv G G a a) => g.trans f }
Equations
- AddConstEquiv.instInv = { inv := AddConstEquiv.symm }
Equations
- AddConstEquiv.instDiv = { div := fun (f g : AddConstEquiv G G a a) => f * g⁻¹ }
Equations
- AddConstEquiv.instPowNat = { pow := fun (e : AddConstEquiv G G a a) (n : ℕ) => { toEquiv := ↑e ^ n, map_add_const' := ⋯ } }
Equations
- AddConstEquiv.instPowInt = { pow := fun (e : AddConstEquiv G G a a) (n : ℤ) => { toEquiv := ↑e ^ n, map_add_const' := ⋯ } }
Equations
- AddConstEquiv.instGroup = Function.Injective.group AddConstEquiv.toEquiv ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Projection from G ≃+c[a, a] G
to permutations G ≃ G
, as a monoid homomorphism.
Equations
- AddConstEquiv.toPerm = MonoidHom.mk' AddConstEquiv.toEquiv ⋯
Instances For
Projection from G ≃+c[a, a] G
to G →+c[a, a] G
, as a monoid homomorphism.
Equations
- AddConstEquiv.toAddConstMapHom = { toFun := AddConstEquiv.toAddConstMap, map_one' := ⋯, map_mul' := ⋯ }
Instances For
Group equivalence between G ≃+c[a, a] G
and the units of G →+c[a, a] G
.
Equations
- One or more equations did not get rendered due to their size.