Documentation

Mathlib.Algebra.AddConstMap.Equiv

Equivalences conjugating (· + a) to (· + b) #

In this file we define AddConstEquiv G H a b (notation: G ≃+c[a, b] H) to be the type of equivalences such that ∀ x, f (x + a) = f x + b.

We also define the corresponding typeclass and prove some basic properties.

structure AddConstEquiv (G : Type u_1) (H : Type u_2) [Add G] [Add H] (a : G) (b : H) extends G H, AddConstMap G H a b :
Type (max u_1 u_2)

An equivalence between G and H conjugating (· + a) to (· + b).

Instances For

    An equivalence between G and H conjugating (· + a) to (· + b).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      instance AddConstEquiv.instEquivLike {G : Type u_4} {H : Type u_5} [Add G] [Add H] {a : G} {b : H} :
      EquivLike (AddConstEquiv G H a b) G H
      Equations
      instance AddConstEquiv.instAddConstMapClass {G : Type u_4} {H : Type u_5} [Add G] [Add H] {a : G} {b : H} :
      theorem AddConstEquiv.ext {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} {e₁ e₂ : AddConstEquiv G H a b} (h : ∀ (x : G), e₁ x = e₂ x) :
      e₁ = e₂
      @[simp]
      theorem AddConstEquiv.toEquiv_inj {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} {e₁ e₂ : AddConstEquiv G H a b} :
      e₁.toEquiv = e₂.toEquiv e₁ = e₂
      @[simp]
      theorem AddConstEquiv.coe_toEquiv {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} (e : AddConstEquiv G H a b) :
      e.toEquiv = e
      def AddConstEquiv.symm {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} (e : AddConstEquiv G H a b) :

      Inverse map of an AddConstEquiv, as an AddConstEquiv.

      Equations
      • e.symm = { toEquiv := e.symm, map_add_const' := }
      Instances For
        def AddConstEquiv.Simps.symm_apply {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} (e : AddConstEquiv G H a b) :
        HG

        A custom projection for simps.

        Equations
        Instances For
          @[simp]
          theorem AddConstEquiv.symm_symm {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} (e : AddConstEquiv G H a b) :
          e.symm.symm = e
          def AddConstEquiv.refl {G : Type u_1} [Add G] (a : G) :

          The identity map as an AddConstEquiv.

          Equations
          Instances For
            @[simp]
            theorem AddConstEquiv.refl_apply {G : Type u_1} [Add G] (a a✝ : G) :
            (AddConstEquiv.refl a) a✝ = a✝
            @[simp]
            theorem AddConstEquiv.refl_toEquiv {G : Type u_1} [Add G] (a : G) :
            @[simp]
            theorem AddConstEquiv.symm_refl {G : Type u_1} [Add G] (a : G) :
            def AddConstEquiv.trans {G : Type u_1} {H : Type u_2} {K : Type u_3} [Add G] [Add H] [Add K] {a : G} {b : H} {c : K} (e₁ : AddConstEquiv G H a b) (e₂ : AddConstEquiv H K b c) :

            Composition of AddConstEquivs, as an AddConstEquiv.

            Equations
            • e₁.trans e₂ = { toEquiv := e₁.trans e₂.toEquiv, map_add_const' := }
            Instances For
              @[simp]
              theorem AddConstEquiv.trans_toEquiv {G : Type u_1} {H : Type u_2} {K : Type u_3} [Add G] [Add H] [Add K] {a : G} {b : H} {c : K} (e₁ : AddConstEquiv G H a b) (e₂ : AddConstEquiv H K b c) :
              (e₁.trans e₂).toEquiv = e₁.trans e₂.toEquiv
              @[simp]
              theorem AddConstEquiv.trans_apply {G : Type u_1} {H : Type u_2} {K : Type u_3} [Add G] [Add H] [Add K] {a : G} {b : H} {c : K} (e₁ : AddConstEquiv G H a b) (e₂ : AddConstEquiv H K b c) (a✝ : G) :
              (e₁.trans e₂) a✝ = e₂ (e₁ a✝)
              @[simp]
              theorem AddConstEquiv.trans_refl {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} (e : AddConstEquiv G H a b) :
              e.trans (AddConstEquiv.refl b) = e
              @[simp]
              theorem AddConstEquiv.refl_trans {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} (e : AddConstEquiv G H a b) :
              (AddConstEquiv.refl a).trans e = e
              @[simp]
              theorem AddConstEquiv.self_trans_symm {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} (e : AddConstEquiv G H a b) :
              e.trans e.symm = AddConstEquiv.refl a
              @[simp]
              theorem AddConstEquiv.symm_trans_self {G : Type u_1} {H : Type u_2} [Add G] [Add H] {a : G} {b : H} (e : AddConstEquiv G H a b) :
              e.symm.trans e = AddConstEquiv.refl b
              instance AddConstEquiv.instOne {G : Type u_1} [Add G] {a : G} :
              One (AddConstEquiv G G a a)
              Equations
              instance AddConstEquiv.instMul {G : Type u_1} [Add G] {a : G} :
              Mul (AddConstEquiv G G a a)
              Equations
              instance AddConstEquiv.instInv {G : Type u_1} [Add G] {a : G} :
              Inv (AddConstEquiv G G a a)
              Equations
              instance AddConstEquiv.instDiv {G : Type u_1} [Add G] {a : G} :
              Div (AddConstEquiv G G a a)
              Equations
              instance AddConstEquiv.instPowNat {G : Type u_1} [Add G] {a : G} :
              Equations
              instance AddConstEquiv.instPowInt {G : Type u_1} [Add G] {a : G} :
              Equations
              instance AddConstEquiv.instGroup {G : Type u_1} [Add G] {a : G} :
              Equations
              def AddConstEquiv.toPerm {G : Type u_1} [Add G] {a : G} :

              Projection from G ≃+c[a, a] G to permutations G ≃ G, as a monoid homomorphism.

              Equations
              Instances For
                @[simp]
                theorem AddConstEquiv.toPerm_apply {G : Type u_1} [Add G] {a : G} (self : AddConstEquiv G G a a) :
                AddConstEquiv.toPerm self = self.toEquiv
                def AddConstEquiv.toAddConstMapHom {G : Type u_1} [Add G] {a : G} :

                Projection from G ≃+c[a, a] G to G →+c[a, a] G, as a monoid homomorphism.

                Equations
                Instances For
                  @[simp]
                  theorem AddConstEquiv.toAddConstMapHom_apply {G : Type u_1} [Add G] {a : G} (self : AddConstEquiv G G a a) :
                  AddConstEquiv.toAddConstMapHom self = self.toAddConstMap
                  def AddConstEquiv.equivUnits {G : Type u_1} [Add G] {a : G} :
                  AddConstEquiv G G a a ≃* (AddConstMap G G a a)ˣ

                  Group equivalence between G ≃+c[a, a] G and the units of G →+c[a, a] G.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem AddConstEquiv.coe_val_equivUnits_apply {G : Type u_1} [Add G] {a : G} (a✝ : AddConstEquiv G G a a) (a✝¹ : G) :
                    (AddConstEquiv.equivUnits a✝) a✝¹ = a✝ a✝¹
                    @[simp]
                    theorem AddConstEquiv.equivUnits_symm_apply_symm_apply {G : Type u_1} [Add G] {a : G} (u : (AddConstMap G G a a)ˣ) :
                    (AddConstEquiv.equivUnits.symm u).symm = u⁻¹
                    @[simp]
                    theorem AddConstEquiv.coe_val_inv_equivUnits_apply {G : Type u_1} [Add G] {a : G} (a✝ : AddConstEquiv G G a a) (a✝¹ : G) :
                    (AddConstEquiv.equivUnits a✝)⁻¹ a✝¹ = a✝⁻¹ a✝¹
                    @[simp]
                    theorem AddConstEquiv.equivUnits_symm_apply_apply {G : Type u_1} [Add G] {a : G} (u : (AddConstMap G G a a)ˣ) :
                    (AddConstEquiv.equivUnits.symm u) = u