Documentation

Init.LawfulBEqTactics

theorem DerivingHelpers.and_true_curry {a b : Bool} {P : Prop} (h : a = trueb = trueP) :
(a && b) = trueP
theorem DerivingHelpers.deriving_lawful_beq_helper_dep {α : Type u_1} {x y : α} [BEq α] [ReflBEq α] {t : (x == y) = trueBool} {P : Prop} (inst : (x == y) = truex = y) (k : ∀ (h : x = y), t = trueP) :
(if h : (x == y) = true then t h else false) = trueP
theorem DerivingHelpers.deriving_lawful_beq_helper_nd {α : Type u_1} {x y : α} [BEq α] [ReflBEq α] {P : Prop} (inst : (x == y) = truex = y) (k : x = yP) :
(x == y) = trueP
Equations
Instances For
    Equations
    Instances For