Documentation

Init.Data.List.MinMax

Lemmas about List.min? and `List.max?. #

Minima and maxima #

min? #

@[simp]
theorem List.min?_nil {α : Type u_1} [Min α] :
[].min? = none
theorem List.min?_cons' {α : Type u_1} {x : α} [Min α] {xs : List α} :
(x :: xs).min? = some (List.foldl min x xs)
@[simp]
theorem List.min?_cons {α : Type u_1} {x : α} [Min α] [Std.Associative min] {xs : List α} :
(x :: xs).min? = some (xs.min?.elim x (min x))
@[simp]
theorem List.min?_eq_none_iff {α : Type u_1} {xs : List α} [Min α] :
xs.min? = none xs = []
theorem List.isSome_min?_of_mem {α : Type u_1} {l : List α} [Min α] {a : α} (h : a l) :
l.min?.isSome = true
theorem List.min?_mem {α : Type u_1} {a : α} [Min α] (min_eq_or : ∀ (a b : α), min a b = a min a b = b) {xs : List α} :
xs.min? = some aa xs
theorem List.le_min?_iff {α : Type u_1} {a : α} [Min α] [LE α] (le_min_iff : ∀ (a b c : α), a min b c a b a c) {xs : List α} :
xs.min? = some a∀ {x : α}, x a ∀ (b : α), b xsx b
theorem List.min?_eq_some_iff {α : Type u_1} {a : α} [Min α] [LE α] [anti : Std.Antisymm fun (x1 x2 : α) => x1 x2] (le_refl : ∀ (a : α), a a) (min_eq_or : ∀ (a b : α), min a b = a min a b = b) (le_min_iff : ∀ (a b c : α), a min b c a b a c) {xs : List α} :
xs.min? = some a a xs ∀ (b : α), b xsa b
theorem List.min?_replicate {α : Type u_1} [Min α] {n : Nat} {a : α} (w : min a a = a) :
(List.replicate n a).min? = if n = 0 then none else some a
@[simp]
theorem List.min?_replicate_of_pos {α : Type u_1} [Min α] {n : Nat} {a : α} (w : min a a = a) (h : 0 < n) :
(List.replicate n a).min? = some a
theorem List.foldl_min {α : Type u_1} [Min α] [Std.IdempotentOp min] [Std.Associative min] {l : List α} {a : α} :
List.foldl min a l = min a (l.min?.getD a)

max? #

@[simp]
theorem List.max?_nil {α : Type u_1} [Max α] :
[].max? = none
theorem List.max?_cons' {α : Type u_1} {x : α} [Max α] {xs : List α} :
(x :: xs).max? = some (List.foldl max x xs)
@[simp]
theorem List.max?_cons {α : Type u_1} {x : α} [Max α] [Std.Associative max] {xs : List α} :
(x :: xs).max? = some (xs.max?.elim x (max x))
@[simp]
theorem List.max?_eq_none_iff {α : Type u_1} {xs : List α} [Max α] :
xs.max? = none xs = []
theorem List.isSome_max?_of_mem {α : Type u_1} {l : List α} [Max α] {a : α} (h : a l) :
l.max?.isSome = true
theorem List.max?_mem {α : Type u_1} {a : α} [Max α] (min_eq_or : ∀ (a b : α), max a b = a max a b = b) {xs : List α} :
xs.max? = some aa xs
theorem List.max?_le_iff {α : Type u_1} {a : α} [Max α] [LE α] (max_le_iff : ∀ (a b c : α), max b c a b a c a) {xs : List α} :
xs.max? = some a∀ {x : α}, a x ∀ (b : α), b xsb x
theorem List.max?_eq_some_iff {α : Type u_1} {a : α} [Max α] [LE α] [anti : Std.Antisymm fun (x1 x2 : α) => x1 x2] (le_refl : ∀ (a : α), a a) (max_eq_or : ∀ (a b : α), max a b = a max a b = b) (max_le_iff : ∀ (a b c : α), max b c a b a c a) {xs : List α} :
xs.max? = some a a xs ∀ (b : α), b xsb a
theorem List.max?_replicate {α : Type u_1} [Max α] {n : Nat} {a : α} (w : max a a = a) :
(List.replicate n a).max? = if n = 0 then none else some a
@[simp]
theorem List.max?_replicate_of_pos {α : Type u_1} [Max α] {n : Nat} {a : α} (w : max a a = a) (h : 0 < n) :
(List.replicate n a).max? = some a
theorem List.foldl_max {α : Type u_1} [Max α] [Std.IdempotentOp max] [Std.Associative max] {l : List α} {a : α} :
List.foldl max a l = max a (l.max?.getD a)
@[reducible, inline, deprecated List.min?_nil]
abbrev List.minimum?_nil {α : Type u_1} [Min α] :
[].min? = none
Equations
Instances For
    @[reducible, inline, deprecated List.min?_cons]
    abbrev List.minimum?_cons {α : Type u_1} {x : α} [Min α] [Std.Associative min] {xs : List α} :
    (x :: xs).min? = some (xs.min?.elim x (min x))
    Equations
    Instances For
      @[reducible, inline, deprecated List.min?_eq_none_iff]
      abbrev List.mininmum?_eq_none_iff {α : Type u_1} {xs : List α} [Min α] :
      xs.min? = none xs = []
      Equations
      Instances For
        @[reducible, inline, deprecated List.min?_mem]
        abbrev List.minimum?_mem {α : Type u_1} {a : α} [Min α] (min_eq_or : ∀ (a b : α), min a b = a min a b = b) {xs : List α} :
        xs.min? = some aa xs
        Equations
        Instances For
          @[reducible, inline, deprecated List.le_min?_iff]
          abbrev List.le_minimum?_iff {α : Type u_1} {a : α} [Min α] [LE α] (le_min_iff : ∀ (a b c : α), a min b c a b a c) {xs : List α} :
          xs.min? = some a∀ {x : α}, x a ∀ (b : α), b xsx b
          Equations
          Instances For
            @[reducible, inline, deprecated List.min?_eq_some_iff]
            abbrev List.minimum?_eq_some_iff {α : Type u_1} {a : α} [Min α] [LE α] [anti : Std.Antisymm fun (x1 x2 : α) => x1 x2] (le_refl : ∀ (a : α), a a) (min_eq_or : ∀ (a b : α), min a b = a min a b = b) (le_min_iff : ∀ (a b c : α), a min b c a b a c) {xs : List α} :
            xs.min? = some a a xs ∀ (b : α), b xsa b
            Equations
            Instances For
              @[reducible, inline, deprecated List.min?_replicate]
              abbrev List.minimum?_replicate {α : Type u_1} [Min α] {n : Nat} {a : α} (w : min a a = a) :
              (List.replicate n a).min? = if n = 0 then none else some a
              Equations
              Instances For
                @[reducible, inline, deprecated List.min?_replicate_of_pos]
                abbrev List.minimum?_replicate_of_pos {α : Type u_1} [Min α] {n : Nat} {a : α} (w : min a a = a) (h : 0 < n) :
                (List.replicate n a).min? = some a
                Equations
                Instances For
                  @[reducible, inline, deprecated List.max?_nil]
                  abbrev List.maximum?_nil {α : Type u_1} [Max α] :
                  [].max? = none
                  Equations
                  Instances For
                    @[reducible, inline, deprecated List.max?_cons]
                    abbrev List.maximum?_cons {α : Type u_1} {x : α} [Max α] [Std.Associative max] {xs : List α} :
                    (x :: xs).max? = some (xs.max?.elim x (max x))
                    Equations
                    Instances For
                      @[reducible, inline, deprecated List.max?_eq_none_iff]
                      abbrev List.maximum?_eq_none_iff {α : Type u_1} {xs : List α} [Max α] :
                      xs.max? = none xs = []
                      Equations
                      Instances For
                        @[reducible, inline, deprecated List.max?_mem]
                        abbrev List.maximum?_mem {α : Type u_1} {a : α} [Max α] (min_eq_or : ∀ (a b : α), max a b = a max a b = b) {xs : List α} :
                        xs.max? = some aa xs
                        Equations
                        Instances For
                          @[reducible, inline, deprecated List.max?_le_iff]
                          abbrev List.maximum?_le_iff {α : Type u_1} {a : α} [Max α] [LE α] (max_le_iff : ∀ (a b c : α), max b c a b a c a) {xs : List α} :
                          xs.max? = some a∀ {x : α}, a x ∀ (b : α), b xsb x
                          Equations
                          Instances For
                            @[reducible, inline, deprecated List.max?_eq_some_iff]
                            abbrev List.maximum?_eq_some_iff {α : Type u_1} {a : α} [Max α] [LE α] [anti : Std.Antisymm fun (x1 x2 : α) => x1 x2] (le_refl : ∀ (a : α), a a) (max_eq_or : ∀ (a b : α), max a b = a max a b = b) (max_le_iff : ∀ (a b c : α), max b c a b a c a) {xs : List α} :
                            xs.max? = some a a xs ∀ (b : α), b xsb a
                            Equations
                            Instances For
                              @[reducible, inline, deprecated List.max?_replicate]
                              abbrev List.maximum?_replicate {α : Type u_1} [Max α] {n : Nat} {a : α} (w : max a a = a) :
                              (List.replicate n a).max? = if n = 0 then none else some a
                              Equations
                              Instances For
                                @[reducible, inline, deprecated List.max?_replicate_of_pos]
                                abbrev List.maximum?_replicate_of_pos {α : Type u_1} [Max α] {n : Nat} {a : α} (w : max a a = a) (h : 0 < n) :
                                (List.replicate n a).max? = some a
                                Equations
                                Instances For