Documentation

Init.Data.BitVec.Basic

We define the basic algebraic structure of bitvectors. We choose the Fin representation over others for its relative efficiency (Lean has special support for Nat), and the fact that bitwise operations on Fin are already defined. Some other possible representations are List Bool, { l : List Bool // l.length = w }, Fin w → Bool.

We define many of the bitvector operations from the QF_BV logic. of SMT-LIB v2.

@[inline, deprecated BitVec.ofNatLT (since := "2025-02-13")]
def BitVec.ofNatLt {n : Nat} (i : Nat) (p : i < 2 ^ n) :

The BitVec with value i, given a proof that i < 2^n.

Equations
Instances For
    instance BitVec.natCastInst {w : Nat} :
    Equations
    @[simp]

    Theorem for normalizing the bitvector literal representation.

    @[simp]
    theorem BitVec.natCast_eq_ofNat (w x : Nat) :
    x = BitVec.ofNat w x

    All empty bitvectors are equal

    @[reducible, inline]
    abbrev BitVec.nil :

    The empty bitvector.

    Equations
    Instances For
      theorem BitVec.eq_nil (x : BitVec 0) :
      x = nil

      Every bitvector of length 0 is equal to nil, i.e., there is only one empty bitvector

      def BitVec.zero (n : Nat) :

      Returns a bitvector of size n where all bits are 0.

      Equations
      Instances For
        Equations

        Returns a bitvector of size n where all bits are 1.

        Equations
        Instances For
          @[inline]
          def BitVec.getLsb' {w : Nat} (x : BitVec w) (i : Fin w) :

          Returns the ith least significant bit.

          This will be renamed getLsb after the existing deprecated alias is removed.

          Equations
          Instances For
            @[inline]
            def BitVec.getLsb? {w : Nat} (x : BitVec w) (i : Nat) :

            Returns the ith least significant bit, or none if i ≥ w.

            Equations
            Instances For
              @[inline]
              def BitVec.getMsb' {w : Nat} (x : BitVec w) (i : Fin w) :

              Returns the ith most significant bit.

              This will be renamed BitVec.getMsb after the existing deprecated alias is removed.

              Equations
              Instances For
                @[inline]
                def BitVec.getMsb? {w : Nat} (x : BitVec w) (i : Nat) :

                Returns the ith most significant bit or none if i ≥ w.

                Equations
                Instances For
                  @[inline]
                  def BitVec.getLsbD {w : Nat} (x : BitVec w) (i : Nat) :

                  Returns the ith least significant bit or false if i ≥ w.

                  Equations
                  Instances For
                    @[inline]
                    def BitVec.getMsbD {w : Nat} (x : BitVec w) (i : Nat) :

                    Returns the ith most significant bit, or false if i ≥ w.

                    Equations
                    Instances For
                      @[inline]
                      def BitVec.msb {n : Nat} (x : BitVec n) :

                      Returns the most significant bit in a bitvector.

                      Equations
                      Instances For
                        instance BitVec.instGetElemNatBoolLt {w : Nat} :
                        GetElem (BitVec w) Nat Bool fun (x : BitVec w) (i : Nat) => i < w
                        Equations
                        @[simp]
                        theorem BitVec.getLsb'_eq_getElem {w : Nat} (x : BitVec w) (i : Fin w) :
                        x.getLsb' i = x[i]

                        We prefer x[i] as the simp normal form for getLsb'

                        @[simp]
                        theorem BitVec.getLsb?_eq_getElem? {w : Nat} (x : BitVec w) (i : Nat) :
                        x.getLsb? i = x[i]?

                        We prefer x[i]? as the simp normal form for getLsb?

                        theorem BitVec.getElem_eq_testBit_toNat {w : Nat} (x : BitVec w) (i : Nat) (h : i < w) :
                        @[simp]
                        theorem BitVec.getLsbD_eq_getElem {w : Nat} {x : BitVec w} {i : Nat} (h : i < w) :
                        x.getLsbD i = x[i]
                        def BitVec.toInt {n : Nat} (x : BitVec n) :

                        Interprets the bitvector as an integer stored in two's complement form.

                        Equations
                        Instances For
                          def BitVec.ofInt (n : Nat) (i : Int) :

                          Converts an integer to its two's complement representation as a bitvector of the given width n, over- and underflowing as needed.

                          The underlying Nat is (2^n + (i mod 2^n)) mod 2^n. Converting the bitvector back to an Int with BitVec.toInt results in the value i.bmod (2^n).

                          Equations
                          Instances For
                            instance BitVec.instIntCast {w : Nat} :
                            Equations

                            Notation for bitvector literals. i#n is a shorthand for BitVec.ofNat n i.

                            Conventions for notations in identifiers:

                            • The recommended spelling of 0#n in identifiers is zero (not ofNat_zero).

                            • The recommended spelling of 1#n in identifiers is one (not ofNat_one).

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              Unexpander for bitvector literals.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                Notation for bitvector literals without truncation. i#'lt is a shorthand for BitVec.ofNatLT i lt.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For

                                  Unexpander for bitvector literals without truncation.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    def BitVec.toHex {n : Nat} (x : BitVec n) :

                                    Converts a bitvector into a fixed-width hexadecimal number with enough digits to represent it.

                                    If n is 0, then one digit is returned. Otherwise, ⌊(n + 3) / 4⌋ digits are returned.

                                    Equations
                                    Instances For
                                      instance BitVec.instRepr {n : Nat} :
                                      Equations
                                      Equations
                                      def BitVec.neg {n : Nat} (x : BitVec n) :

                                      Negation of bitvectors. This can be interpreted as either signed or unsigned negation modulo 2^n. Usually accessed via the - prefix operator.

                                      SMT-LIB name: bvneg.

                                      Equations
                                      Instances For
                                        instance BitVec.instNeg {n : Nat} :
                                        Equations
                                        def BitVec.abs {n : Nat} (x : BitVec n) :

                                        Returns the absolute value of a signed bitvector.

                                        Equations
                                        Instances For
                                          def BitVec.mul {n : Nat} (x y : BitVec n) :

                                          Multiplies two bitvectors. This can be interpreted as either signed or unsigned multiplication modulo 2^n. Usually accessed via the * operator.

                                          SMT-LIB name: bvmul.

                                          Equations
                                          Instances For
                                            instance BitVec.instMul {n : Nat} :
                                            Equations
                                            def BitVec.udiv {n : Nat} (x y : BitVec n) :

                                            Unsigned division of bitvectors using the Lean convention where division by zero returns zero. Usually accessed via the / operator.

                                            Equations
                                            Instances For
                                              instance BitVec.instDiv {n : Nat} :
                                              Equations
                                              def BitVec.umod {n : Nat} (x y : BitVec n) :

                                              Unsigned modulo for bitvectors. Usually accessed via the % operator.

                                              SMT-LIB name: bvurem.

                                              Equations
                                              Instances For
                                                instance BitVec.instMod {n : Nat} :
                                                Equations
                                                def BitVec.smtUDiv {n : Nat} (x y : BitVec n) :

                                                Unsigned division of bitvectors using the SMT-LIB convention, where division by zero returns BitVector.allOnes n.

                                                SMT-LIB name: bvudiv.

                                                Equations
                                                Instances For
                                                  def BitVec.sdiv {n : Nat} (x y : BitVec n) :

                                                  Signed T-division (using the truncating rounding convention) for bitvectors. This function obeys the Lean convention that division by zero returns zero.

                                                  Examples:

                                                  • (7#4).sdiv 2 = 3#4
                                                  • (-9#4).sdiv 2 = -4#4
                                                  • (5#4).sdiv -2 = -2#4
                                                  • (-7#4).sdiv (-2) = 3#4
                                                  Equations
                                                  Instances For
                                                    def BitVec.smtSDiv {n : Nat} (x y : BitVec n) :

                                                    Signed division for bitvectors using the SMT-LIB using the SMT-LIB convention, where division by zero returns BitVector.allOnes n.

                                                    Specifically, x.smtSDiv 0 = if x >= 0 then -1 else 1

                                                    SMT-LIB name: bvsdiv.

                                                    Equations
                                                    Instances For
                                                      def BitVec.srem {n : Nat} (x y : BitVec n) :

                                                      Remainder for signed division rounding to zero.

                                                      SMT-LIB name: bvsrem.

                                                      Equations
                                                      Instances For
                                                        def BitVec.smod {m : Nat} (x y : BitVec m) :

                                                        Remainder for signed division rounded to negative infinity.

                                                        SMT-LIB name: bvsmod.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For

                                                          Turns a Bool into a bitvector of length 1.

                                                          Equations
                                                          Instances For
                                                            def BitVec.fill (w : Nat) (b : Bool) :

                                                            Fills a bitvector with w copies of the bit b.

                                                            Equations
                                                            Instances For
                                                              def BitVec.ult {n : Nat} (x y : BitVec n) :

                                                              Unsigned less-than for bitvectors.

                                                              SMT-LIB name: bvult.

                                                              Equations
                                                              Instances For
                                                                def BitVec.ule {n : Nat} (x y : BitVec n) :

                                                                Unsigned less-than-or-equal-to for bitvectors.

                                                                SMT-LIB name: bvule.

                                                                Equations
                                                                Instances For
                                                                  def BitVec.slt {n : Nat} (x y : BitVec n) :

                                                                  Signed less-than for bitvectors.

                                                                  SMT-LIB name: bvslt.

                                                                  Examples:

                                                                  Equations
                                                                  Instances For
                                                                    def BitVec.sle {n : Nat} (x y : BitVec n) :

                                                                    Signed less-than-or-equal-to for bitvectors.

                                                                    SMT-LIB name: bvsle.

                                                                    Equations
                                                                    Instances For
                                                                      @[inline]
                                                                      def BitVec.cast {n m : Nat} (eq : n = m) (x : BitVec n) :

                                                                      If two natural numbers n and m are equal, then a bitvector of width n is also a bitvector of width m.

                                                                      Using x.cast eq should be preferred over eq ▸ x because there are special-purpose simp lemmas that can more consistently simplify BitVec.cast away.

                                                                      Equations
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem BitVec.cast_ofNat {n m : Nat} (h : n = m) (x : Nat) :
                                                                        @[simp]
                                                                        theorem BitVec.cast_cast {n m k : Nat} (h₁ : n = m) (h₂ : m = k) (x : BitVec n) :
                                                                        BitVec.cast h₂ (BitVec.cast h₁ x) = BitVec.cast x
                                                                        @[simp]
                                                                        theorem BitVec.cast_eq {n : Nat} (h : n = n) (x : BitVec n) :
                                                                        def BitVec.extractLsb' {n : Nat} (start len : Nat) (x : BitVec n) :
                                                                        BitVec len

                                                                        Extracts the bits start to start + len - 1 from a bitvector of size n to yield a new bitvector of size len. If start + len > n, then the bitvector is zero-extended.

                                                                        Equations
                                                                        Instances For
                                                                          def BitVec.extractLsb {n : Nat} (hi lo : Nat) (x : BitVec n) :
                                                                          BitVec (hi - lo + 1)

                                                                          Extracts the bits from hi down to lo (both inclusive) from a bitvector, which is implicitly zero-extended if necessary.

                                                                          The resulting bitvector has size hi - lo + 1.

                                                                          SMT-LIB name: extract.

                                                                          Equations
                                                                          Instances For
                                                                            def BitVec.setWidth' {n w : Nat} (le : n w) (x : BitVec n) :

                                                                            Increases the width of a bitvector to one that is at least as large by zero-extending it.

                                                                            This is a constant-time operation because the underlying Nat is unmodified; because the new width is at least as large as the old one, no overflow is possible.

                                                                            Equations
                                                                            Instances For
                                                                              @[reducible, inline, deprecated BitVec.setWidth' (since := "2024-09-18")]
                                                                              abbrev BitVec.zeroExtend' {n w : Nat} (le : n w) (x : BitVec n) :

                                                                              Increases the width of a bitvector to one that is at least as large by zero-extending it.

                                                                              This is a constant-time operation because the underlying Nat is unmodified; because the new width is at least as large as the old one, no overflow is possible.

                                                                              Equations
                                                                              Instances For
                                                                                def BitVec.shiftLeftZeroExtend {w : Nat} (msbs : BitVec w) (m : Nat) :
                                                                                BitVec (w + m)

                                                                                Returns zeroExtend (w+n) x <<< n without needing to compute x % 2^(2+n).

                                                                                Equations
                                                                                Instances For
                                                                                  def BitVec.setWidth {w : Nat} (v : Nat) (x : BitVec w) :

                                                                                  Transforms a bitvector of length w into a bitvector of length v, padding with 0 as needed.

                                                                                  The specific behavior depends on the relationship between the starting width w and the final width v:

                                                                                  • If v > w, it is zero-extended; the high bits are padded with zeroes until the bitvector has v bits.
                                                                                  • If v = w, the bitvector is returned unchanged.
                                                                                  • If v < w, the high bits are truncated.

                                                                                  BitVec.setWidth, BitVec.zeroExtend, and BitVec.truncate are aliases for this operation.

                                                                                  SMT-LIB name: zero_extend.

                                                                                  Equations
                                                                                  Instances For
                                                                                    @[reducible, inline]
                                                                                    abbrev BitVec.zeroExtend {w : Nat} (v : Nat) (x : BitVec w) :

                                                                                    Transforms a bitvector of length w into a bitvector of length v, padding with 0 as needed.

                                                                                    The specific behavior depends on the relationship between the starting width w and the final width v:

                                                                                    • If v > w, it is zero-extended; the high bits are padded with zeroes until the bitvector has v bits.
                                                                                    • If v = w, the bitvector is returned unchanged.
                                                                                    • If v < w, the high bits are truncated.

                                                                                    BitVec.setWidth, BitVec.zeroExtend, and BitVec.truncate are aliases for this operation.

                                                                                    SMT-LIB name: zero_extend.

                                                                                    Equations
                                                                                    Instances For
                                                                                      @[reducible, inline]
                                                                                      abbrev BitVec.truncate {w : Nat} (v : Nat) (x : BitVec w) :

                                                                                      Transforms a bitvector of length w into a bitvector of length v, padding with 0 as needed.

                                                                                      The specific behavior depends on the relationship between the starting width w and the final width v:

                                                                                      • If v > w, it is zero-extended; the high bits are padded with zeroes until the bitvector has v bits.
                                                                                      • If v = w, the bitvector is returned unchanged.
                                                                                      • If v < w, the high bits are truncated.

                                                                                      BitVec.setWidth, BitVec.zeroExtend, and BitVec.truncate are aliases for this operation.

                                                                                      SMT-LIB name: zero_extend.

                                                                                      Equations
                                                                                      Instances For
                                                                                        def BitVec.signExtend {w : Nat} (v : Nat) (x : BitVec w) :

                                                                                        Transforms a bitvector of length w into a bitvector of length v, padding as needed with the most significant bit's value.

                                                                                        If x is an empty bitvector, then the sign is treated as zero.

                                                                                        SMT-LIB name: sign_extend.

                                                                                        Equations
                                                                                        Instances For
                                                                                          def BitVec.and {n : Nat} (x y : BitVec n) :

                                                                                          Bitwise and for bitvectors. Usually accessed via the &&& operator.

                                                                                          SMT-LIB name: bvand.

                                                                                          Example:

                                                                                          • 0b1010#4 &&& 0b0110#4 = 0b0010#4
                                                                                          Equations
                                                                                          Instances For
                                                                                            instance BitVec.instAndOp {w : Nat} :
                                                                                            Equations
                                                                                            def BitVec.or {n : Nat} (x y : BitVec n) :

                                                                                            Bitwise or for bitvectors. Usually accessed via the ||| operator.

                                                                                            SMT-LIB name: bvor.

                                                                                            Example:

                                                                                            • 0b1010#4 ||| 0b0110#4 = 0b1110#4
                                                                                            Equations
                                                                                            Instances For
                                                                                              instance BitVec.instOrOp {w : Nat} :
                                                                                              Equations
                                                                                              def BitVec.xor {n : Nat} (x y : BitVec n) :

                                                                                              Bitwise xor for bitvectors. Usually accessed via the ^^^ operator.

                                                                                              SMT-LIB name: bvxor.

                                                                                              Example:

                                                                                              • 0b1010#4 ^^^ 0b0110#4 = 0b1100#4
                                                                                              Equations
                                                                                              Instances For
                                                                                                instance BitVec.instXor {w : Nat} :
                                                                                                Equations
                                                                                                def BitVec.not {n : Nat} (x : BitVec n) :

                                                                                                Bitwise complement for bitvectors. Usually accessed via the ~~~ prefix operator.

                                                                                                SMT-LIB name: bvnot.

                                                                                                Example:

                                                                                                • ~~~(0b0101#4) == 0b1010
                                                                                                Equations
                                                                                                Instances For
                                                                                                  Equations
                                                                                                  def BitVec.shiftLeft {n : Nat} (x : BitVec n) (s : Nat) :

                                                                                                  Shifts a bitvector to the left. The low bits are filled with zeros. As a numeric operation, this is equivalent to x * 2^s, modulo 2^n.

                                                                                                  SMT-LIB name: bvshl except this operator uses a Nat shift value.

                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    def BitVec.ushiftRight {n : Nat} (x : BitVec n) (s : Nat) :

                                                                                                    Shifts a bitvector to the right. This is a logical right shift - the high bits are filled with zeros.

                                                                                                    As a numeric operation, this is equivalent to x / 2^s, rounding down.

                                                                                                    SMT-LIB name: bvlshr except this operator uses a Nat shift value.

                                                                                                    Equations
                                                                                                    Instances For
                                                                                                      def BitVec.sshiftRight {n : Nat} (x : BitVec n) (s : Nat) :

                                                                                                      Shifts a bitvector to the right. This is an arithmetic right shift - the high bits are filled with most significant bit's value.

                                                                                                      As a numeric operation, this is equivalent to x.toInt >>> s.

                                                                                                      SMT-LIB name: bvashr except this operator uses a Nat shift value.

                                                                                                      Equations
                                                                                                      Instances For
                                                                                                        instance BitVec.instHShiftLeft {m n : Nat} :
                                                                                                        Equations
                                                                                                        Equations
                                                                                                        def BitVec.sshiftRight' {n m : Nat} (a : BitVec n) (s : BitVec m) :

                                                                                                        Shifts a bitvector to the right. This is an arithmetic right shift - the high bits are filled with most significant bit's value.

                                                                                                        As a numeric operation, this is equivalent to a.toInt >>> s.toNat.

                                                                                                        SMT-LIB name: bvashr.

                                                                                                        Equations
                                                                                                        Instances For
                                                                                                          def BitVec.rotateLeftAux {w : Nat} (x : BitVec w) (n : Nat) :

                                                                                                          Auxiliary function for rotateLeft, which does not take into account the case where the rotation amount is greater than the bitvector width.

                                                                                                          Equations
                                                                                                          Instances For
                                                                                                            def BitVec.rotateLeft {w : Nat} (x : BitVec w) (n : Nat) :

                                                                                                            Rotates the bits in a bitvector to the left.

                                                                                                            All the bits of x are shifted to higher positions, with the top n bits wrapping around to fill the vacated low bits.

                                                                                                            SMT-LIB name: rotate_left, except this operator uses a Nat shift amount.

                                                                                                            Example:

                                                                                                            Equations
                                                                                                            Instances For
                                                                                                              def BitVec.rotateRightAux {w : Nat} (x : BitVec w) (n : Nat) :

                                                                                                              Auxiliary function for rotateRight, which does not take into account the case where the rotation amount is greater than the bitvector width.

                                                                                                              Equations
                                                                                                              Instances For
                                                                                                                def BitVec.rotateRight {w : Nat} (x : BitVec w) (n : Nat) :

                                                                                                                Rotates the bits in a bitvector to the right.

                                                                                                                All the bits of x are shifted to lower positions, with the bottom n bits wrapping around to fill the vacated high bits.

                                                                                                                SMT-LIB name: rotate_right, except this operator uses a Nat shift amount.

                                                                                                                Example:

                                                                                                                Equations
                                                                                                                Instances For
                                                                                                                  def BitVec.append {n m : Nat} (msbs : BitVec n) (lsbs : BitVec m) :
                                                                                                                  BitVec (n + m)

                                                                                                                  Concatenates two bitvectors using the “big-endian” convention that the more significant input is on the left. Usually accessed via the ++ operator.

                                                                                                                  SMT-LIB name: concat.

                                                                                                                  Example:

                                                                                                                  • 0xAB#8 ++ 0xCD#8 = 0xABCD#16.
                                                                                                                  Equations
                                                                                                                  Instances For
                                                                                                                    instance BitVec.instHAppendHAddNat {w v : Nat} :
                                                                                                                    HAppend (BitVec w) (BitVec v) (BitVec (w + v))
                                                                                                                    Equations
                                                                                                                    def BitVec.replicate {w : Nat} (i : Nat) :
                                                                                                                    BitVec wBitVec (w * i)

                                                                                                                    Concatenates i copies of x into a new vector of length w * i.

                                                                                                                    Equations
                                                                                                                    Instances For

                                                                                                                      Cons and Concat #

                                                                                                                      We give special names to the operations of adding a single bit to either end of a bitvector. We follow the precedent of Vector.cons/Vector.concat both for the name, and for the decision to have the resulting size be n + 1 for both operations (rather than 1 + n, which would be the result of appending a single bit to the front in the naive implementation).

                                                                                                                      def BitVec.concat {n : Nat} (msbs : BitVec n) (lsb : Bool) :
                                                                                                                      BitVec (n + 1)

                                                                                                                      Append a single bit to the end of a bitvector, using big endian order (see append). That is, the new bit is the least significant bit.

                                                                                                                      Equations
                                                                                                                      Instances For
                                                                                                                        def BitVec.shiftConcat {n : Nat} (x : BitVec n) (b : Bool) :

                                                                                                                        Shifts all bits of x to the left by 1 and sets the least significant bit to b.

                                                                                                                        This is a non-dependent version of BitVec.concat that does not change the total bitwidth.

                                                                                                                        Equations
                                                                                                                        Instances For
                                                                                                                          def BitVec.cons {n : Nat} (msb : Bool) (lsbs : BitVec n) :
                                                                                                                          BitVec (n + 1)

                                                                                                                          Prepends a single bit to the front of a bitvector, using big-endian order (see append).

                                                                                                                          The new bit is the most significant bit.

                                                                                                                          Equations
                                                                                                                          Instances For
                                                                                                                            theorem BitVec.append_ofBool {w : Nat} (msbs : BitVec w) (lsb : Bool) :
                                                                                                                            msbs ++ ofBool lsb = msbs.concat lsb
                                                                                                                            theorem BitVec.ofBool_append {w : Nat} (msb : Bool) (lsbs : BitVec w) :
                                                                                                                            ofBool msb ++ lsbs = BitVec.cast (cons msb lsbs)
                                                                                                                            def BitVec.twoPow (w i : Nat) :

                                                                                                                            twoPow w i is the bitvector 2^i if i < w, and 0 otherwise. In other words, it is 2 to the power i.

                                                                                                                            From the bitwise point of view, it has the ith bit as 1 and all other bits as 0.

                                                                                                                            Equations
                                                                                                                            Instances For
                                                                                                                              @[irreducible]
                                                                                                                              def BitVec.hash {n : Nat} (bv : BitVec n) :

                                                                                                                              Computes a hash of a bitvector, combining 64-bit words using mixHash.

                                                                                                                              Equations
                                                                                                                              Instances For

                                                                                                                                We add simp-lemmas that rewrite bitvector operations into the equivalent notation

                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.append_eq {w v : Nat} (x : BitVec w) (y : BitVec v) :
                                                                                                                                x.append y = x ++ y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.shiftLeft_eq {w : Nat} (x : BitVec w) (n : Nat) :
                                                                                                                                x.shiftLeft n = x <<< n
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.ushiftRight_eq {w : Nat} (x : BitVec w) (n : Nat) :
                                                                                                                                x.ushiftRight n = x >>> n
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.not_eq {w : Nat} (x : BitVec w) :
                                                                                                                                x.not = ~~~x
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.and_eq {w : Nat} (x y : BitVec w) :
                                                                                                                                x.and y = x &&& y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.or_eq {w : Nat} (x y : BitVec w) :
                                                                                                                                x.or y = x ||| y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.xor_eq {w : Nat} (x y : BitVec w) :
                                                                                                                                x.xor y = x ^^^ y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.neg_eq {w : Nat} (x : BitVec w) :
                                                                                                                                x.neg = -x
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.add_eq {w : Nat} (x y : BitVec w) :
                                                                                                                                x.add y = x + y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.sub_eq {w : Nat} (x y : BitVec w) :
                                                                                                                                x.sub y = x - y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.mul_eq {w : Nat} (x y : BitVec w) :
                                                                                                                                x.mul y = x * y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.udiv_eq {w : Nat} (x y : BitVec w) :
                                                                                                                                x.udiv y = x / y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.umod_eq {w : Nat} (x y : BitVec w) :
                                                                                                                                x.umod y = x % y
                                                                                                                                @[simp]
                                                                                                                                theorem BitVec.zero_eq {n : Nat} :

                                                                                                                                Converts a list of Bools into a big-endian BitVec.

                                                                                                                                Equations
                                                                                                                                Instances For

                                                                                                                                  Converts a list of Bools into a little-endian BitVec.

                                                                                                                                  Equations
                                                                                                                                  Instances For

                                                                                                                                    Overflow #

                                                                                                                                    def BitVec.uaddOverflow {w : Nat} (x y : BitVec w) :

                                                                                                                                    Checks whether addition of x and y results in unsigned overflow.

                                                                                                                                    SMT-LIB name: bvuaddo.

                                                                                                                                    Equations
                                                                                                                                    Instances For
                                                                                                                                      def BitVec.saddOverflow {w : Nat} (x y : BitVec w) :

                                                                                                                                      Checks whether addition of x and y results in signed overflow, treating x and y as 2's complement signed bitvectors.

                                                                                                                                      SMT-LIB name: bvsaddo.

                                                                                                                                      Equations
                                                                                                                                      Instances For
                                                                                                                                        def BitVec.usubOverflow {w : Nat} (x y : BitVec w) :

                                                                                                                                        Checks whether subtraction of x and y results in unsigned overflow.

                                                                                                                                        SMT-Lib name: bvusubo.

                                                                                                                                        Equations
                                                                                                                                        Instances For
                                                                                                                                          def BitVec.ssubOverflow {w : Nat} (x y : BitVec w) :

                                                                                                                                          Checks whether the subtraction of x and y results in signed overflow, treating x and y as 2's complement signed bitvectors.

                                                                                                                                          SMT-Lib name: bvssubo.

                                                                                                                                          Equations
                                                                                                                                          Instances For
                                                                                                                                            def BitVec.negOverflow {w : Nat} (x : BitVec w) :

                                                                                                                                            Checks whether the negation of a bitvector results in overflow.

                                                                                                                                            For a bitvector x with nonzero width, this only happens if x = intMin.

                                                                                                                                            SMT-Lib name: bvnego.

                                                                                                                                            Equations
                                                                                                                                            Instances For
                                                                                                                                              def BitVec.reverse {w : Nat} :
                                                                                                                                              BitVec wBitVec w

                                                                                                                                              Reverses the bits in a bitvector.

                                                                                                                                              Equations
                                                                                                                                              Instances For