The completion of a number field at an infinite place #
instance
NumberField.InfinitePlace.Completion.instNontriviallyNormedField_fLT
{K : Type u_1}
[Field K]
{v : InfinitePlace K}
:
Equations
- NumberField.InfinitePlace.Completion.instNontriviallyNormedField_fLT = { toNormedField := NumberField.InfinitePlace.Completion.instNormedField v, non_trivial := ⋯ }
instance
NumberField.InfinitePlace.Completion.instAlgebraValEqComapAlgebraMap_fLT
{K : Type u_1}
{L : Type u_2}
[Field K]
[Field L]
[Algebra K L]
{v : InfinitePlace K}
{wv : ExtensionPlace L v}
:
Algebra v.Completion (↑wv).Completion
instance
NumberField.InfinitePlace.Completion.instNormedSpaceValEqComapAlgebraMap_fLT
{K : Type u_1}
{L : Type u_2}
[Field K]
[Field L]
[Algebra K L]
{v : InfinitePlace K}
{wv : ExtensionPlace L v}
:
NormedSpace v.Completion (↑wv).Completion
Equations
- NumberField.InfinitePlace.Completion.instNormedSpaceValEqComapAlgebraMap_fLT = { toModule := Algebra.toModule, norm_smul_le := ⋯ }
instance
NumberField.InfinitePlace.Completion.instFiniteDimensionalValEqComapAlgebraMap_fLT
{K : Type u_1}
{L : Type u_2}
[Field K]
[Field L]
[Algebra K L]
{v : InfinitePlace K}
{wv : ExtensionPlace L v}
:
FiniteDimensional v.Completion (↑wv).Completion
def
NumberField.InfinitePlace.Completion.comapHom
{K : Type u_1}
{L : Type u_2}
[Field K]
[Field L]
[Algebra K L]
{v : InfinitePlace K}
{w : InfinitePlace L}
(h : w.comap (algebraMap K L) = v)
:
The map from v.Completion
to w.Completion
whenever the infinite place w
of L
lies
above the infinite place v
of K
.
Equations
Instances For
theorem
NumberField.InfinitePlace.Completion.comapHom_cont
{K : Type u_1}
{L : Type u_2}
[Field K]
[Field L]
[Algebra K L]
{v : InfinitePlace K}
{w : InfinitePlace L}
(h : w.comap (algebraMap K L) = v)
:
Continuous ⇑(comapHom h)
def
NumberField.InfinitePlace.Completion.piExtensionPlace
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
:
The map from v.Completion
to the product of all completions of L
lying above v
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
NumberField.InfinitePlace.Completion.piExtensionPlace_apply
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
(x : v.Completion)
:
def
NumberField.InfinitePlace.Completion.instAlgebraTensorProduct_fLT
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
:
Algebra v.Completion (TensorProduct K L v.Completion)
Equations
Instances For
instance
NumberField.InfinitePlace.Completion.instTopologicalSpaceTensorProduct_fLT
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
:
TopologicalSpace (TensorProduct K L v.Completion)
instance
NumberField.InfinitePlace.Completion.instIsModuleTopologyTensorProduct_fLT
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
:
IsModuleTopology v.Completion (TensorProduct K L v.Completion)
@[reducible, inline]
abbrev
NumberField.InfinitePlace.Completion.baseChange
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
:
The L
-algebra map L ⊗[K] v.Completion
to the product of all completions of L
lying
above v
, induced by piExtensionPlace
.
Equations
Instances For
theorem
NumberField.InfinitePlace.Completion.continuous_baseChange_tmul_right
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
:
Continuous fun (x : v.Completion) => (baseChange L v) (1 ⊗ₜ[K] x)
@[reducible, inline]
abbrev
NumberField.InfinitePlace.Completion.baseChangeRight
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
:
The v.Completion
-algebra map L ⊗[K] v.Completion
to the product of all completions of L
lying above v
, induced by piExtensionPlace
.
Equations
Instances For
theorem
NumberField.InfinitePlace.Completion.finrank_pi_eq_finrank_tensorProduct
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
[NumberField L]
:
Module.finrank v.Completion ((w : ExtensionPlace L v) → (↑w).Completion) = Module.finrank v.Completion (TensorProduct K L v.Completion)
theorem
NumberField.InfinitePlace.Completion.baseChange_surjective
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
[NumberField L]
:
Function.Surjective ⇑(baseChange L v)
theorem
NumberField.InfinitePlace.Completion.baseChange_injective
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
[NumberField L]
[NumberField K]
:
Function.Injective ⇑(baseChange L v)
instance
NumberField.InfinitePlace.Completion.instIsModuleTopologyValEqComapAlgebraMap_fLT
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
{wv : ExtensionPlace L v}
:
IsModuleTopology v.Completion (↑wv).Completion
instance
NumberField.InfinitePlace.Completion.instIsTopologicalSemiringTensorProduct_fLT
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
[NumberField L]
[NumberField K]
:
def
NumberField.InfinitePlace.Completion.baseChangeEquiv
{K : Type u_1}
(L : Type u_2)
[Field K]
[Field L]
[Algebra K L]
(v : InfinitePlace K)
[NumberField L]
[NumberField K]
:
The L
-algebra homeomorphism between L ⊗[K] v.Completion
and the product of all completions
of L
lying above v
.