Documentation

FLT.ForMathlib.Topology.Algebra.Algebra

Topological (sub)algebras #

This file contains an API for ContinuousAlgEquiv.

structure ContinuousAlgEquiv (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] extends A ≃ₐ[R] B :
Type (max u_2 u_3)
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      class ContinuousAlgEquivClass (F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] [EquivLike F A B] extends AlgEquivClass F R A B :
      Instances
        def ContinuousAlgEquiv.toContinuousAlgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
        A →A[R] B
        Equations
        • e = { toAlgHom := e.toAlgEquiv, cont := }
        Instances For
          instance ContinuousAlgEquiv.coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] :
          Coe (A ≃A[R]B) (A →A[R] B)
          Equations
          • ContinuousAlgEquiv.coe = { coe := ContinuousAlgEquiv.toContinuousAlgHom }
          instance ContinuousAlgEquiv.equivLike {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] :
          EquivLike (A ≃A[R]B) A B
          Equations
          • ContinuousAlgEquiv.equivLike = { coe := fun (f : A ≃A[R]B) => f.toFun, inv := fun (f : A ≃A[R]B) => f.invFun, left_inv := , right_inv := , coe_injective' := }
          theorem ContinuousAlgEquiv.coe_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (a : A) :
          e a = e a
          @[simp]
          theorem ContinuousAlgEquiv.coe_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
          e = e
          theorem ContinuousAlgEquiv.toAlgEquiv_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] :
          Function.Injective ContinuousAlgEquiv.toAlgEquiv
          theorem ContinuousAlgEquiv.ext {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] {f g : A ≃A[R]B} (h : f = g) :
          f = g
          theorem ContinuousAlgEquiv.coe_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] :
          Function.Injective ContinuousAlgEquiv.toContinuousAlgHom
          @[simp]
          theorem ContinuousAlgEquiv.coe_inj {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] {f g : A ≃A[R]B} :
          f = g f = g
          def ContinuousAlgEquiv.toHomeomorph {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
          A ≃ₜ B
          Equations
          • e.toHomeomorph = { toEquiv := e.toEquiv, continuous_toFun := , continuous_invFun := }
          Instances For
            @[simp]
            theorem ContinuousAlgEquiv.coe_toHomeomorph {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
            e.toHomeomorph = e
            theorem ContinuousAlgEquiv.isOpenMap {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
            theorem ContinuousAlgEquiv.image_closure {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (S : Set A) :
            e '' closure S = closure (e '' S)
            theorem ContinuousAlgEquiv.preimage_closure {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (S : Set B) :
            e ⁻¹' closure S = closure (e ⁻¹' S)
            @[simp]
            theorem ContinuousAlgEquiv.isClosed_image {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) {S : Set A} :
            IsClosed (e '' S) IsClosed S
            theorem ContinuousAlgEquiv.map_nhds_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (a : A) :
            Filter.map (⇑e) (nhds a) = nhds (e a)
            theorem ContinuousAlgEquiv.map_zero {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
            e 0 = 0
            theorem ContinuousAlgEquiv.map_add {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (a₁ a₂ : A) :
            e (a₁ + a₂) = e a₁ + e a₂
            theorem ContinuousAlgEquiv.map_smul {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (r : R) (a : A) :
            e (r a) = r e a
            theorem ContinuousAlgEquiv.map_eq_zero_iff {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) {a : A} :
            e a = 0 a = 0
            theorem ContinuousAlgEquiv.continuous {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
            theorem ContinuousAlgEquiv.continuousOn {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) {S : Set A} :
            ContinuousOn (⇑e) S
            theorem ContinuousAlgEquiv.continuousAt {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) {a : A} :
            ContinuousAt (⇑e) a
            theorem ContinuousAlgEquiv.continuousWithinAt {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) {S : Set A} {a : A} :
            theorem ContinuousAlgEquiv.comp_continuous_iff {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] {α : Type u_5} [TopologicalSpace α] (e : A ≃A[R]B) {f : αA} :
            def ContinuousAlgEquiv.refl (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [TopologicalSpace A] [Algebra R A] :
            A ≃A[R]A
            Equations
            Instances For
              @[simp]
              theorem ContinuousAlgEquiv.refl_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [TopologicalSpace A] [Algebra R A] (a : A) :
              @[simp]
              def ContinuousAlgEquiv.symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
              B ≃A[R]A
              Equations
              • e.symm = { toAlgEquiv := e.symm, continuous_toFun := , continuous_invFun := }
              Instances For
                @[simp]
                theorem ContinuousAlgEquiv.apply_symm_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (b : B) :
                e (e.symm b) = b
                @[simp]
                theorem ContinuousAlgEquiv.symm_apply_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (a : A) :
                e.symm (e a) = a
                @[simp]
                theorem ContinuousAlgEquiv.symm_image_image {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (S : Set A) :
                e.symm '' (e '' S) = S
                @[simp]
                theorem ContinuousAlgEquiv.image_symm_image {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (S : Set B) :
                e '' (e.symm '' S) = S
                @[simp]
                theorem ContinuousAlgEquiv.symm_toAlgEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
                e.symm.toAlgEquiv = e.symm
                @[simp]
                theorem ContinuousAlgEquiv.symm_toHomeomorph {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
                e.symm.toHomeomorph = e.toHomeomorph.symm
                theorem ContinuousAlgEquiv.symm_map_nhds_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (a : A) :
                Filter.map (⇑e.symm) (nhds (e a)) = nhds a
                def ContinuousAlgEquiv.trans {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Semiring C] [TopologicalSpace C] [Algebra R A] [Algebra R B] [Algebra R C] (e₁ : A ≃A[R]B) (e₂ : B ≃A[R]C) :
                A ≃A[R]C
                Equations
                • e₁.trans e₂ = { toAlgEquiv := e₁.trans e₂.toAlgEquiv, continuous_toFun := , continuous_invFun := }
                Instances For
                  @[simp]
                  theorem ContinuousAlgEquiv.trans_toAlgEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Semiring C] [TopologicalSpace C] [Algebra R A] [Algebra R B] [Algebra R C] (e₁ : A ≃A[R]B) (e₂ : B ≃A[R]C) :
                  (e₁.trans e₂).toAlgEquiv = e₁.trans e₂.toAlgEquiv
                  @[simp]
                  theorem ContinuousAlgEquiv.trans_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Semiring C] [TopologicalSpace C] [Algebra R A] [Algebra R B] [Algebra R C] (e₁ : A ≃A[R]B) (e₂ : B ≃A[R]C) (a : A) :
                  (e₁.trans e₂) a = e₂ (e₁ a)
                  @[simp]
                  theorem ContinuousAlgEquiv.symm_trans_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Semiring C] [TopologicalSpace C] [Algebra R A] [Algebra R B] [Algebra R C] (e₁ : B ≃A[R]A) (e₂ : C ≃A[R]B) (a : A) :
                  (e₂.trans e₁).symm a = e₂.symm (e₁.symm a)
                  @[simp]
                  theorem ContinuousAlgEquiv.comp_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Semiring C] [TopologicalSpace C] [Algebra R A] [Algebra R B] [Algebra R C] (e₁ : A ≃A[R]B) (e₂ : B ≃A[R]C) :
                  (↑e₂.toAlgEquiv).comp e₁.toAlgEquiv = (e₁.trans e₂)
                  @[simp]
                  theorem ContinuousAlgEquiv.coe_comp_coe_symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
                  (↑e).comp e.symm = ContinuousAlgHom.id R B
                  @[simp]
                  theorem ContinuousAlgEquiv.coe_symm_comp_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
                  (↑e.symm).comp e = ContinuousAlgHom.id R A
                  @[simp]
                  theorem ContinuousAlgEquiv.symm_comp_self {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
                  e.symm.toFun e.toFun = id
                  @[simp]
                  theorem ContinuousAlgEquiv.self_comp_symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
                  e.toFun e.symm.toFun = id
                  @[simp]
                  theorem ContinuousAlgEquiv.symm_symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) :
                  e.symm.symm = e
                  theorem ContinuousAlgEquiv.symm_symm_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (a : A) :
                  e.symm.symm a = e a
                  theorem ContinuousAlgEquiv.symm_apply_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) {a : A} {b : B} :
                  e.symm b = a b = e a
                  theorem ContinuousAlgEquiv.eq_symm_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) {a : A} {b : B} :
                  a = e.symm b e a = b
                  theorem ContinuousAlgEquiv.image_eq_preimage {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (S : Set A) :
                  e '' S = e.symm ⁻¹' S
                  theorem ContinuousAlgEquiv.image_symm_eq_preimage {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (S : Set B) :
                  e.symm '' S = e ⁻¹' S
                  @[simp]
                  theorem ContinuousAlgEquiv.symm_preimage_preimage {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (S : Set B) :
                  e.symm ⁻¹' (e ⁻¹' S) = S
                  @[simp]
                  theorem ContinuousAlgEquiv.preimage_symm_preimage {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A ≃A[R]B) (S : Set A) :
                  e ⁻¹' (e.symm ⁻¹' S) = S
                  theorem ContinuousAlgEquiv.isUniformEmbedding {R : Type u_1} [CommSemiring R] {E₁ : Type u_5} {E₂ : Type u_6} [UniformSpace E₁] [UniformSpace E₂] [Ring E₁] [UniformAddGroup E₁] [Algebra R E₁] [Ring E₂] [UniformAddGroup E₂] [Algebra R E₂] (e : E₁ ≃A[R]E₂) :
                  theorem AlgEquiv.isUniformEmbedding {R : Type u_1} [CommSemiring R] {E₁ : Type u_5} {E₂ : Type u_6} [UniformSpace E₁] [UniformSpace E₂] [Ring E₁] [UniformAddGroup E₁] [Algebra R E₁] [Ring E₂] [UniformAddGroup E₂] [Algebra R E₂] (e : E₁ ≃ₐ[R] E₂) (h₁ : Continuous e) (h₂ : Continuous e.symm) :