Topological (sub)algebras #
This file contains an API for ContinuousAlgEquiv
.
structure
ContinuousAlgEquiv
(R : Type u_1)
(A : Type u_2)
(B : Type u_3)
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
extends A ≃ₐ[R] B :
Type (max u_2 u_3)
- toFun : A → B
- invFun : B → A
- left_inv : Function.LeftInverse self.invFun self.toFun
- right_inv : Function.RightInverse self.invFun self.toFun
- commutes' : ∀ (r : R), self.toFun ((algebraMap R A) r) = (algebraMap R B) r
- continuous_toFun : Continuous self.toFun
- continuous_invFun : Continuous self.invFun
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
class
ContinuousAlgEquivClass
(F : Type u_1)
(R : outParam (Type u_2))
(A : outParam (Type u_3))
(B : outParam (Type u_4))
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
[EquivLike F A B]
extends AlgEquivClass F R A B :
- commutes : ∀ (f : F) (r : R), f ((algebraMap R A) r) = (algebraMap R B) r
- map_continuous : ∀ (f : F), Continuous ⇑f
- inv_continuous : ∀ (f : F), Continuous (EquivLike.inv f)
Instances
def
ContinuousAlgEquiv.toContinuousAlgHom
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
Equations
- ↑e = { toAlgHom := ↑e.toAlgEquiv, cont := ⋯ }
Instances For
instance
ContinuousAlgEquiv.coe
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
:
Equations
- ContinuousAlgEquiv.coe = { coe := ContinuousAlgEquiv.toContinuousAlgHom }
instance
ContinuousAlgEquiv.equivLike
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
:
theorem
ContinuousAlgEquiv.continuousAlgEquivClass
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
:
ContinuousAlgEquivClass (A ≃A[R]B) R A B
theorem
ContinuousAlgEquiv.coe_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(a : A)
:
↑e a = e a
@[simp]
theorem
ContinuousAlgEquiv.coe_coe
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
⇑↑e = ⇑e
theorem
ContinuousAlgEquiv.toAlgEquiv_injective
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
:
Function.Injective ContinuousAlgEquiv.toAlgEquiv
theorem
ContinuousAlgEquiv.ext
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
{f g : A ≃A[R]B}
(h : ⇑f = ⇑g)
:
f = g
theorem
ContinuousAlgEquiv.coe_injective
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
:
Function.Injective ContinuousAlgEquiv.toContinuousAlgHom
@[simp]
theorem
ContinuousAlgEquiv.coe_inj
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
{f g : A ≃A[R]B}
:
def
ContinuousAlgEquiv.toHomeomorph
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
A ≃ₜ B
Equations
- e.toHomeomorph = { toEquiv := e.toEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
theorem
ContinuousAlgEquiv.coe_toHomeomorph
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
⇑e.toHomeomorph = ⇑e
theorem
ContinuousAlgEquiv.isOpenMap
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
IsOpenMap ⇑e
theorem
ContinuousAlgEquiv.image_closure
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(S : Set A)
:
theorem
ContinuousAlgEquiv.preimage_closure
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(S : Set B)
:
@[simp]
theorem
ContinuousAlgEquiv.isClosed_image
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
{S : Set A}
:
theorem
ContinuousAlgEquiv.map_nhds_eq
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(a : A)
:
Filter.map (⇑e) (nhds a) = nhds (e a)
theorem
ContinuousAlgEquiv.map_zero
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
e 0 = 0
theorem
ContinuousAlgEquiv.map_add
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(a₁ a₂ : A)
:
theorem
ContinuousAlgEquiv.map_smul
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(r : R)
(a : A)
:
theorem
ContinuousAlgEquiv.map_eq_zero_iff
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
{a : A}
:
theorem
ContinuousAlgEquiv.continuous
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
Continuous ⇑e
theorem
ContinuousAlgEquiv.continuousOn
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
{S : Set A}
:
ContinuousOn (⇑e) S
theorem
ContinuousAlgEquiv.continuousAt
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
{a : A}
:
ContinuousAt (⇑e) a
theorem
ContinuousAlgEquiv.continuousWithinAt
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
{S : Set A}
{a : A}
:
ContinuousWithinAt (⇑e) S a
theorem
ContinuousAlgEquiv.comp_continuous_iff
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
{α : Type u_5}
[TopologicalSpace α]
(e : A ≃A[R]B)
{f : α → A}
:
Continuous (⇑e ∘ f) ↔ Continuous f
def
ContinuousAlgEquiv.refl
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Algebra R A]
:
Equations
- ContinuousAlgEquiv.refl R A = { toAlgEquiv := AlgEquiv.refl, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
theorem
ContinuousAlgEquiv.refl_apply
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Algebra R A]
(a : A)
:
(ContinuousAlgEquiv.refl R A) a = a
@[simp]
theorem
ContinuousAlgEquiv.coe_refl
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Algebra R A]
:
↑(ContinuousAlgEquiv.refl R A) = ContinuousAlgHom.id R A
@[simp]
theorem
ContinuousAlgEquiv.coe_refl'
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Algebra R A]
:
⇑(ContinuousAlgEquiv.refl R A) = id
def
ContinuousAlgEquiv.symm
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
Equations
- e.symm = { toAlgEquiv := e.symm, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
theorem
ContinuousAlgEquiv.apply_symm_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(b : B)
:
e (e.symm b) = b
@[simp]
theorem
ContinuousAlgEquiv.symm_apply_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(a : A)
:
e.symm (e a) = a
@[simp]
theorem
ContinuousAlgEquiv.symm_image_image
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(S : Set A)
:
@[simp]
theorem
ContinuousAlgEquiv.image_symm_image
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(S : Set B)
:
@[simp]
theorem
ContinuousAlgEquiv.symm_toAlgEquiv
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
e.symm.toAlgEquiv = e.symm
@[simp]
theorem
ContinuousAlgEquiv.symm_toHomeomorph
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
e.symm.toHomeomorph = e.toHomeomorph.symm
theorem
ContinuousAlgEquiv.symm_map_nhds_eq
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(a : A)
:
Filter.map (⇑e.symm) (nhds (e a)) = nhds a
def
ContinuousAlgEquiv.trans
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Semiring C]
[TopologicalSpace C]
[Algebra R A]
[Algebra R B]
[Algebra R C]
(e₁ : A ≃A[R]B)
(e₂ : B ≃A[R]C)
:
Equations
- e₁.trans e₂ = { toAlgEquiv := e₁.trans e₂.toAlgEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
theorem
ContinuousAlgEquiv.trans_toAlgEquiv
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Semiring C]
[TopologicalSpace C]
[Algebra R A]
[Algebra R B]
[Algebra R C]
(e₁ : A ≃A[R]B)
(e₂ : B ≃A[R]C)
:
(e₁.trans e₂).toAlgEquiv = e₁.trans e₂.toAlgEquiv
@[simp]
theorem
ContinuousAlgEquiv.trans_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Semiring C]
[TopologicalSpace C]
[Algebra R A]
[Algebra R B]
[Algebra R C]
(e₁ : A ≃A[R]B)
(e₂ : B ≃A[R]C)
(a : A)
:
(e₁.trans e₂) a = e₂ (e₁ a)
@[simp]
theorem
ContinuousAlgEquiv.symm_trans_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Semiring C]
[TopologicalSpace C]
[Algebra R A]
[Algebra R B]
[Algebra R C]
(e₁ : B ≃A[R]A)
(e₂ : C ≃A[R]B)
(a : A)
:
(e₂.trans e₁).symm a = e₂.symm (e₁.symm a)
@[simp]
theorem
ContinuousAlgEquiv.comp_coe
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Semiring C]
[TopologicalSpace C]
[Algebra R A]
[Algebra R B]
[Algebra R C]
(e₁ : A ≃A[R]B)
(e₂ : B ≃A[R]C)
:
(↑e₂.toAlgEquiv).comp ↑e₁.toAlgEquiv = ↑(e₁.trans e₂)
@[simp]
theorem
ContinuousAlgEquiv.coe_comp_coe_symm
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
(↑e).comp ↑e.symm = ContinuousAlgHom.id R B
@[simp]
theorem
ContinuousAlgEquiv.coe_symm_comp_coe
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
(↑e.symm).comp ↑e = ContinuousAlgHom.id R A
@[simp]
theorem
ContinuousAlgEquiv.symm_comp_self
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
@[simp]
theorem
ContinuousAlgEquiv.self_comp_symm
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
@[simp]
theorem
ContinuousAlgEquiv.symm_symm
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
:
e.symm.symm = e
@[simp]
theorem
ContinuousAlgEquiv.refl_symm
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Algebra R A]
:
(ContinuousAlgEquiv.refl R A).symm = ContinuousAlgEquiv.refl R A
theorem
ContinuousAlgEquiv.symm_symm_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(a : A)
:
e.symm.symm a = e a
theorem
ContinuousAlgEquiv.symm_apply_eq
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
{a : A}
{b : B}
:
theorem
ContinuousAlgEquiv.eq_symm_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
{a : A}
{b : B}
:
theorem
ContinuousAlgEquiv.image_eq_preimage
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(S : Set A)
:
theorem
ContinuousAlgEquiv.image_symm_eq_preimage
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(S : Set B)
:
@[simp]
theorem
ContinuousAlgEquiv.symm_preimage_preimage
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(S : Set B)
:
@[simp]
theorem
ContinuousAlgEquiv.preimage_symm_preimage
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[TopologicalSpace A]
[Semiring B]
[TopologicalSpace B]
[Algebra R A]
[Algebra R B]
(e : A ≃A[R]B)
(S : Set A)
:
theorem
ContinuousAlgEquiv.isUniformEmbedding
{R : Type u_1}
[CommSemiring R]
{E₁ : Type u_5}
{E₂ : Type u_6}
[UniformSpace E₁]
[UniformSpace E₂]
[Ring E₁]
[UniformAddGroup E₁]
[Algebra R E₁]
[Ring E₂]
[UniformAddGroup E₂]
[Algebra R E₂]
(e : E₁ ≃A[R]E₂)
:
theorem
AlgEquiv.isUniformEmbedding
{R : Type u_1}
[CommSemiring R]
{E₁ : Type u_5}
{E₂ : Type u_6}
[UniformSpace E₁]
[UniformSpace E₂]
[Ring E₁]
[UniformAddGroup E₁]
[Algebra R E₁]
[Ring E₂]
[UniformAddGroup E₂]
[Algebra R E₂]
(e : E₁ ≃ₐ[R] E₂)
(h₁ : Continuous ⇑e)
(h₂ : Continuous ⇑e.symm)
: