Skip to content

API Reference - Storage (reservoir, river, groundwater)

This section of the documentation provides a reference for the API of the nodes.storage module.

Created on Mon Nov 15 14:20:36 2021.

@author: bdobson Converted to totals on 2022-05-03

Groundwater

Bases: Storage

Source code in wsimod\nodes\storage.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
class Groundwater(Storage):
    """"""

    def __init__(
        self,
        residence_time=200,
        infiltration_threshold=1,
        infiltration_pct=0,
        data_input_dict={},
        **kwargs,
    ):
        # TODO why isn't this using a ResidenceTank?
        """A storage with a residence time for groundwater. Can also infiltrate to
        sewers.

        Args:
            residence_time (float, optional): Residence time (see nodes.py/
                ResidenceTank). Defaults to 200.
            infiltration_threshold (float, optional): Proportion of storage capacity
                that must be exceeded to generate infiltration. Defaults to 1.
            infiltration_pct (float, optional): Proportion of storage above the
                threshold that is square rooted and infiltrated. Defaults to 0.
            data_input_dict (dict, optional): Dictionary of data inputs relevant for
                the node (though I don't think it is used). Defaults to {}.

        Functions intended to call in orchestration:
            infiltrate (before sewers are discharged)

            distribute

        Key assumptions:
            - Conceptualises groundwater as a tank.
            - Baseflow is generated following a residence-time method.
            - Baseflow is sent to `storage.py/River`, `nodes.py/Node` or
                `waste.py/Waste` nodes.
            - Infiltration to `sewer.py/Sewer` nodes occurs when the storage
                in the tank is greater than a specified threshold, at a rate
                proportional to the sqrt of volume above the threshold. (Note, this
                behaviour is __not validated__ and a high uncertainty process in
                general)
            - If `decays` are provided to model water quality transformations,
                see `core.py/DecayObj`.

        Input data and parameter requirements:
            - Groundwater tank `capacity`, `area`, and `datum`.
                _Units_: cubic metres, squared metres, metres
            - Infiltration behaviour determined by an `infiltration_threshold`
                and `infiltration_pct`. _Units_: proportion of capacity
            - Optional dictionary of decays with pollutants as keys and decay
                parameters (a constant and a temperature sensitivity exponent) as
                values. _Units_: -
        """
        self.residence_time = residence_time
        self.infiltration_threshold = infiltration_threshold
        self.infiltration_pct = infiltration_pct
        # TODO not used data_input
        self.data_input_dict = data_input_dict
        super().__init__(**kwargs)

    def apply_overrides(self, overrides=Dict[str, Any]):
        """Override parameters.

        Enables a user to override any of the following parameters:
        residence_time, infiltration_threshold, infiltration_pct.

        Args:
            overrides (Dict[str, Any]): Dict describing which parameters should
                be overridden (keys) and new values (values). Defaults to {}.
        """
        self.residence_time = overrides.pop("residence_time", self.residence_time)
        self.infiltration_threshold = overrides.pop(
            "infiltration_threshold", self.infiltration_threshold
        )
        self.infiltration_pct = overrides.pop("infiltration_pct", self.infiltration_pct)
        super().apply_overrides(overrides)

    def distribute(self):
        """Calculate outflow with residence time and send to Nodes or Rivers."""
        avail = self.tank.get_avail()["volume"] / self.residence_time
        to_send = self.tank.pull_storage({"volume": avail})
        retained = self.push_distributed(to_send, of_type=["Node", "River", "Waste"])
        _ = self.tank.push_storage(retained, force=True)
        if retained["volume"] > constants.FLOAT_ACCURACY:
            print("Storage unable to push")

    def infiltrate(self):
        """Calculate amount of water available for infiltration and send to sewers."""
        # Calculate infiltration
        avail = self.tank.get_avail()["volume"]
        avail = max(avail - self.tank.capacity * self.infiltration_threshold, 0)
        avail = (avail * self.infiltration_pct) ** 0.5

        # Push to sewers
        to_send = self.tank.pull_storage({"volume": avail})
        retained = self.push_distributed(to_send, of_type="Sewer")
        _ = self.tank.push_storage(retained, force=True)
        # Any not sent is left in tank
        if retained["volume"] > constants.FLOAT_ACCURACY:
            # print('unable to infiltrate')
            pass

__init__(residence_time=200, infiltration_threshold=1, infiltration_pct=0, data_input_dict={}, **kwargs)

A storage with a residence time for groundwater. Can also infiltrate to sewers.

Parameters:

Name Type Description Default
residence_time float

Residence time (see nodes.py/ ResidenceTank). Defaults to 200.

200
infiltration_threshold float

Proportion of storage capacity that must be exceeded to generate infiltration. Defaults to 1.

1
infiltration_pct float

Proportion of storage above the threshold that is square rooted and infiltrated. Defaults to 0.

0
data_input_dict dict

Dictionary of data inputs relevant for the node (though I don't think it is used). Defaults to {}.

{}
Functions intended to call in orchestration

infiltrate (before sewers are discharged)

distribute

Key assumptions
  • Conceptualises groundwater as a tank.
  • Baseflow is generated following a residence-time method.
  • Baseflow is sent to storage.py/River, nodes.py/Node or waste.py/Waste nodes.
  • Infiltration to sewer.py/Sewer nodes occurs when the storage in the tank is greater than a specified threshold, at a rate proportional to the sqrt of volume above the threshold. (Note, this behaviour is not validated and a high uncertainty process in general)
  • If decays are provided to model water quality transformations, see core.py/DecayObj.
Input data and parameter requirements
  • Groundwater tank capacity, area, and datum. Units: cubic metres, squared metres, metres
  • Infiltration behaviour determined by an infiltration_threshold and infiltration_pct. Units: proportion of capacity
  • Optional dictionary of decays with pollutants as keys and decay parameters (a constant and a temperature sensitivity exponent) as values. Units: -
Source code in wsimod\nodes\storage.py
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def __init__(
    self,
    residence_time=200,
    infiltration_threshold=1,
    infiltration_pct=0,
    data_input_dict={},
    **kwargs,
):
    # TODO why isn't this using a ResidenceTank?
    """A storage with a residence time for groundwater. Can also infiltrate to
    sewers.

    Args:
        residence_time (float, optional): Residence time (see nodes.py/
            ResidenceTank). Defaults to 200.
        infiltration_threshold (float, optional): Proportion of storage capacity
            that must be exceeded to generate infiltration. Defaults to 1.
        infiltration_pct (float, optional): Proportion of storage above the
            threshold that is square rooted and infiltrated. Defaults to 0.
        data_input_dict (dict, optional): Dictionary of data inputs relevant for
            the node (though I don't think it is used). Defaults to {}.

    Functions intended to call in orchestration:
        infiltrate (before sewers are discharged)

        distribute

    Key assumptions:
        - Conceptualises groundwater as a tank.
        - Baseflow is generated following a residence-time method.
        - Baseflow is sent to `storage.py/River`, `nodes.py/Node` or
            `waste.py/Waste` nodes.
        - Infiltration to `sewer.py/Sewer` nodes occurs when the storage
            in the tank is greater than a specified threshold, at a rate
            proportional to the sqrt of volume above the threshold. (Note, this
            behaviour is __not validated__ and a high uncertainty process in
            general)
        - If `decays` are provided to model water quality transformations,
            see `core.py/DecayObj`.

    Input data and parameter requirements:
        - Groundwater tank `capacity`, `area`, and `datum`.
            _Units_: cubic metres, squared metres, metres
        - Infiltration behaviour determined by an `infiltration_threshold`
            and `infiltration_pct`. _Units_: proportion of capacity
        - Optional dictionary of decays with pollutants as keys and decay
            parameters (a constant and a temperature sensitivity exponent) as
            values. _Units_: -
    """
    self.residence_time = residence_time
    self.infiltration_threshold = infiltration_threshold
    self.infiltration_pct = infiltration_pct
    # TODO not used data_input
    self.data_input_dict = data_input_dict
    super().__init__(**kwargs)

apply_overrides(overrides=Dict[str, Any])

Override parameters.

Enables a user to override any of the following parameters: residence_time, infiltration_threshold, infiltration_pct.

Parameters:

Name Type Description Default
overrides Dict[str, Any]

Dict describing which parameters should be overridden (keys) and new values (values). Defaults to {}.

Dict[str, Any]
Source code in wsimod\nodes\storage.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def apply_overrides(self, overrides=Dict[str, Any]):
    """Override parameters.

    Enables a user to override any of the following parameters:
    residence_time, infiltration_threshold, infiltration_pct.

    Args:
        overrides (Dict[str, Any]): Dict describing which parameters should
            be overridden (keys) and new values (values). Defaults to {}.
    """
    self.residence_time = overrides.pop("residence_time", self.residence_time)
    self.infiltration_threshold = overrides.pop(
        "infiltration_threshold", self.infiltration_threshold
    )
    self.infiltration_pct = overrides.pop("infiltration_pct", self.infiltration_pct)
    super().apply_overrides(overrides)

distribute()

Calculate outflow with residence time and send to Nodes or Rivers.

Source code in wsimod\nodes\storage.py
222
223
224
225
226
227
228
229
def distribute(self):
    """Calculate outflow with residence time and send to Nodes or Rivers."""
    avail = self.tank.get_avail()["volume"] / self.residence_time
    to_send = self.tank.pull_storage({"volume": avail})
    retained = self.push_distributed(to_send, of_type=["Node", "River", "Waste"])
    _ = self.tank.push_storage(retained, force=True)
    if retained["volume"] > constants.FLOAT_ACCURACY:
        print("Storage unable to push")

infiltrate()

Calculate amount of water available for infiltration and send to sewers.

Source code in wsimod\nodes\storage.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
def infiltrate(self):
    """Calculate amount of water available for infiltration and send to sewers."""
    # Calculate infiltration
    avail = self.tank.get_avail()["volume"]
    avail = max(avail - self.tank.capacity * self.infiltration_threshold, 0)
    avail = (avail * self.infiltration_pct) ** 0.5

    # Push to sewers
    to_send = self.tank.pull_storage({"volume": avail})
    retained = self.push_distributed(to_send, of_type="Sewer")
    _ = self.tank.push_storage(retained, force=True)
    # Any not sent is left in tank
    if retained["volume"] > constants.FLOAT_ACCURACY:
        # print('unable to infiltrate')
        pass

QueueGroundwater

Bases: Storage

Source code in wsimod\nodes\storage.py
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
class QueueGroundwater(Storage):
    """"""

    # TODO - no infiltration as yet
    def __init__(self, timearea={0: 1}, data_input_dict={}, **kwargs):
        """Alternate formulation of Groundwater that uses a timearea property to enable
        more nonlinear time behaviour of baseflow routing. Uses the QueueTank or
        DecayQueueTank (see nodes.py/Tank subclassses).

        NOTE: abstraction behaviour from this kind of node need careful checking

        Args:
            timearea (dict, optional): Time area diagram that enables flows to
                take a range of different durations to 'traverse' the tank. The keys of
                the dict are the number of timesteps while the values are the proportion
                of flow. E.g., {0 : 0.7, 1 : 0.3} means 70% of flow takes 0 timesteps
                and 30% takes 1 timesteps. Defaults to {0 : 1}.
            data_input_dict (dict, optional): Dictionary of data inputs relevant for
                the node (though I don't think it is used). Defaults to {}.

        Functions intended to call in orchestration:
            distribute

        Key assumptions:
            - Conceptualises groundwater as a tank.
            - Baseflow is generated following a timearea method.
            - Baseflow is sent to `storage.py/River`, `nodes.py/Node` or
                `waste.py/Waste` nodes.
            - No infiltration to sewers is modelled.
            - If `decays` are provided to model water quality transformations,
                see `core.py/DecayObj`.

        Input data and parameter requirements:
            - Groundwater tank `capacity`, `area`, and `datum`.
                _Units_: cubic metres, squared metres, metres
            - `timearea` is a dictionary containing the timearea diagram.
                _Units_: duration of flow (in timesteps) and proportion of flow
            - Optional dictionary of decays with pollutants as keys and decay
                parameters (a constant and a temperature sensitivity exponent) as
                values. _Units_: -
        """
        self.timearea = timearea
        # TODO not used
        self.data_input_dict = data_input_dict
        super().__init__(**kwargs)
        # Label as Groundwater class so that other nodes treat it the same
        self.__class__.__name__ = "Groundwater"
        # Update handlers
        self.push_set_handler["default"] = self.push_set_timearea
        self.pull_set_handler["default"] = self.pull_set_active
        self.pull_check_handler["default"] = self.pull_check_active
        # Enable decay
        if self.decays is None:
            self.tank = QueueTank(
                capacity=self.capacity,
                area=self.area,
                datum=self.datum,
                initial_storage=self.initial_storage,
            )
        else:
            self.tank = DecayQueueTank(
                capacity=self.capacity,
                area=self.area,
                datum=self.datum,
                decays=self.decays,
                parent=self,
                initial_storage=self.initial_storage,
            )

    def apply_overrides(self, overrides=Dict[str, Any]):
        """Override parameters.

        Enables a user to override any of the following parameters:
        timearea.

        Args:
            overrides (Dict[str, Any]): Dict describing which parameters should
                be overridden (keys) and new values (values). Defaults to {}.
        """
        self.timearea = overrides.pop("timearea", self.timearea)
        super().apply_overrides(overrides)

    def push_set_timearea(self, vqip):
        """Push setting that enables timearea behaviour, (see __init__ for
        description).Used to receive flow that is assumed to occur widely across some
        kind of catchment.

        Args:
            vqip (dict): A VQIP that has been pushed

        Returns:
            reply (dict): A VQIP amount that was not successfuly receivesd
        """
        reply = self.empty_vqip()
        # Iterate over timearea diagram TODO timearea diagram behaviour be generalised
        # across nodes
        for time, normalised in self.timearea.items():
            vqip_ = self.v_change_vqip(vqip, vqip["volume"] * normalised)
            reply_ = self.tank.push_storage(vqip_, time=time)
            reply = self.sum_vqip(reply, reply_)
        return reply

    def distribute(self):
        """Update internal arc, push active_storage onwards, update tank."""
        _ = self.tank.internal_arc.update_queue(direction="push")

        remaining = self.push_distributed(self.tank.active_storage)

        if remaining["volume"] > constants.FLOAT_ACCURACY:
            print("Groundwater couldnt push all")

        # Update tank
        sent = self.tank.active_storage["volume"] - remaining["volume"]
        sent = self.v_change_vqip(self.tank.active_storage, sent)
        reply = self.tank.pull_storage(sent)
        if (reply["volume"] - sent["volume"]) > constants.FLOAT_ACCURACY:
            print("Miscalculated tank storage in discharge")

    def infiltrate(self):
        """"""
        pass

    def pull_check_active(self, vqip=None):
        """A pull check that returns the active storage.

        Args:
            vqip (dict, optional): A VQIP that can be used to limit the volume in
                the return value (only volume key is used). Defaults to None.

        Returns:
            (dict): A VQIP amount that is available to pull
        """
        if vqip is None:
            return self.tank.active_storage
        else:
            reply = min(vqip["volume"], self.tank.active_storage["volume"])
            return self.v_change_vqip(self.tank.active_storage, reply)

    def pull_set_active(self, vqip):
        # TODO - this is quite weird behaviour, and inconsistent with pull_check_active
        """Pull proportionately from both the active storage and the queue. Adjudging
        groundwater abstractions to not be particularly sensitive to the within
        catchment travel time.

        Args:
            vqip (dict): A VQIP amount to be pulled (only volume key is used)

        Returns:
            pulled (dict): A VQIP amount that was successfully pulled
        """
        # Calculate actual pull
        total_storage = self.tank.storage["volume"]
        total_pull = min(self.tank.storage["volume"], vqip["volume"])

        if total_pull < constants.FLOAT_ACCURACY:
            return self.empty_vqip()
        else:
            # Track total pull in pulled
            pulled = self.empty_vqip()
            # Iterate over queue
            if isinstance(self.tank.internal_arc.queue, dict):
                for t, v in self.tank.internal_arc.queue.items():
                    # Pull proportionately
                    t_pulled = self.v_change_vqip(
                        self.tank.internal_arc.queue[t],
                        v["volume"] * total_pull / total_storage,
                    )
                    # Reduce queue VQIPs
                    self.tank.internal_arc.queue[t] = self.extract_vqip(
                        self.tank.internal_arc.queue[t], t_pulled
                    )
                    # Track pull
                    pulled = self.sum_vqip(pulled, t_pulled)
                # Pull also from active storage
                a_pulled = self.v_change_vqip(
                    self.tank.active_storage,
                    self.tank.active_storage["volume"] * total_pull / total_storage,
                )
                self.tank.active_storage = self.extract_vqip(
                    self.tank.active_storage, a_pulled
                )
                pulled = self.sum_vqip(pulled, a_pulled)

                # Recalculate storage
                self.tank.storage = self.extract_vqip(self.tank.storage, pulled)
                return pulled

__init__(timearea={0: 1}, data_input_dict={}, **kwargs)

Alternate formulation of Groundwater that uses a timearea property to enable more nonlinear time behaviour of baseflow routing. Uses the QueueTank or DecayQueueTank (see nodes.py/Tank subclassses).

NOTE: abstraction behaviour from this kind of node need careful checking

Parameters:

Name Type Description Default
timearea dict

Time area diagram that enables flows to take a range of different durations to 'traverse' the tank. The keys of the dict are the number of timesteps while the values are the proportion of flow. E.g., {0 : 0.7, 1 : 0.3} means 70% of flow takes 0 timesteps and 30% takes 1 timesteps. Defaults to {0 : 1}.

{0: 1}
data_input_dict dict

Dictionary of data inputs relevant for the node (though I don't think it is used). Defaults to {}.

{}
Functions intended to call in orchestration

distribute

Key assumptions
  • Conceptualises groundwater as a tank.
  • Baseflow is generated following a timearea method.
  • Baseflow is sent to storage.py/River, nodes.py/Node or waste.py/Waste nodes.
  • No infiltration to sewers is modelled.
  • If decays are provided to model water quality transformations, see core.py/DecayObj.
Input data and parameter requirements
  • Groundwater tank capacity, area, and datum. Units: cubic metres, squared metres, metres
  • timearea is a dictionary containing the timearea diagram. Units: duration of flow (in timesteps) and proportion of flow
  • Optional dictionary of decays with pollutants as keys and decay parameters (a constant and a temperature sensitivity exponent) as values. Units: -
Source code in wsimod\nodes\storage.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def __init__(self, timearea={0: 1}, data_input_dict={}, **kwargs):
    """Alternate formulation of Groundwater that uses a timearea property to enable
    more nonlinear time behaviour of baseflow routing. Uses the QueueTank or
    DecayQueueTank (see nodes.py/Tank subclassses).

    NOTE: abstraction behaviour from this kind of node need careful checking

    Args:
        timearea (dict, optional): Time area diagram that enables flows to
            take a range of different durations to 'traverse' the tank. The keys of
            the dict are the number of timesteps while the values are the proportion
            of flow. E.g., {0 : 0.7, 1 : 0.3} means 70% of flow takes 0 timesteps
            and 30% takes 1 timesteps. Defaults to {0 : 1}.
        data_input_dict (dict, optional): Dictionary of data inputs relevant for
            the node (though I don't think it is used). Defaults to {}.

    Functions intended to call in orchestration:
        distribute

    Key assumptions:
        - Conceptualises groundwater as a tank.
        - Baseflow is generated following a timearea method.
        - Baseflow is sent to `storage.py/River`, `nodes.py/Node` or
            `waste.py/Waste` nodes.
        - No infiltration to sewers is modelled.
        - If `decays` are provided to model water quality transformations,
            see `core.py/DecayObj`.

    Input data and parameter requirements:
        - Groundwater tank `capacity`, `area`, and `datum`.
            _Units_: cubic metres, squared metres, metres
        - `timearea` is a dictionary containing the timearea diagram.
            _Units_: duration of flow (in timesteps) and proportion of flow
        - Optional dictionary of decays with pollutants as keys and decay
            parameters (a constant and a temperature sensitivity exponent) as
            values. _Units_: -
    """
    self.timearea = timearea
    # TODO not used
    self.data_input_dict = data_input_dict
    super().__init__(**kwargs)
    # Label as Groundwater class so that other nodes treat it the same
    self.__class__.__name__ = "Groundwater"
    # Update handlers
    self.push_set_handler["default"] = self.push_set_timearea
    self.pull_set_handler["default"] = self.pull_set_active
    self.pull_check_handler["default"] = self.pull_check_active
    # Enable decay
    if self.decays is None:
        self.tank = QueueTank(
            capacity=self.capacity,
            area=self.area,
            datum=self.datum,
            initial_storage=self.initial_storage,
        )
    else:
        self.tank = DecayQueueTank(
            capacity=self.capacity,
            area=self.area,
            datum=self.datum,
            decays=self.decays,
            parent=self,
            initial_storage=self.initial_storage,
        )

apply_overrides(overrides=Dict[str, Any])

Override parameters.

Enables a user to override any of the following parameters: timearea.

Parameters:

Name Type Description Default
overrides Dict[str, Any]

Dict describing which parameters should be overridden (keys) and new values (values). Defaults to {}.

Dict[str, Any]
Source code in wsimod\nodes\storage.py
317
318
319
320
321
322
323
324
325
326
327
328
def apply_overrides(self, overrides=Dict[str, Any]):
    """Override parameters.

    Enables a user to override any of the following parameters:
    timearea.

    Args:
        overrides (Dict[str, Any]): Dict describing which parameters should
            be overridden (keys) and new values (values). Defaults to {}.
    """
    self.timearea = overrides.pop("timearea", self.timearea)
    super().apply_overrides(overrides)

distribute()

Update internal arc, push active_storage onwards, update tank.

Source code in wsimod\nodes\storage.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
def distribute(self):
    """Update internal arc, push active_storage onwards, update tank."""
    _ = self.tank.internal_arc.update_queue(direction="push")

    remaining = self.push_distributed(self.tank.active_storage)

    if remaining["volume"] > constants.FLOAT_ACCURACY:
        print("Groundwater couldnt push all")

    # Update tank
    sent = self.tank.active_storage["volume"] - remaining["volume"]
    sent = self.v_change_vqip(self.tank.active_storage, sent)
    reply = self.tank.pull_storage(sent)
    if (reply["volume"] - sent["volume"]) > constants.FLOAT_ACCURACY:
        print("Miscalculated tank storage in discharge")

infiltrate()

Source code in wsimod\nodes\storage.py
366
367
368
def infiltrate(self):
    """"""
    pass

pull_check_active(vqip=None)

A pull check that returns the active storage.

Parameters:

Name Type Description Default
vqip dict

A VQIP that can be used to limit the volume in the return value (only volume key is used). Defaults to None.

None

Returns:

Type Description
dict

A VQIP amount that is available to pull

Source code in wsimod\nodes\storage.py
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def pull_check_active(self, vqip=None):
    """A pull check that returns the active storage.

    Args:
        vqip (dict, optional): A VQIP that can be used to limit the volume in
            the return value (only volume key is used). Defaults to None.

    Returns:
        (dict): A VQIP amount that is available to pull
    """
    if vqip is None:
        return self.tank.active_storage
    else:
        reply = min(vqip["volume"], self.tank.active_storage["volume"])
        return self.v_change_vqip(self.tank.active_storage, reply)

pull_set_active(vqip)

Pull proportionately from both the active storage and the queue. Adjudging groundwater abstractions to not be particularly sensitive to the within catchment travel time.

Parameters:

Name Type Description Default
vqip dict

A VQIP amount to be pulled (only volume key is used)

required

Returns:

Name Type Description
pulled dict

A VQIP amount that was successfully pulled

Source code in wsimod\nodes\storage.py
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
def pull_set_active(self, vqip):
    # TODO - this is quite weird behaviour, and inconsistent with pull_check_active
    """Pull proportionately from both the active storage and the queue. Adjudging
    groundwater abstractions to not be particularly sensitive to the within
    catchment travel time.

    Args:
        vqip (dict): A VQIP amount to be pulled (only volume key is used)

    Returns:
        pulled (dict): A VQIP amount that was successfully pulled
    """
    # Calculate actual pull
    total_storage = self.tank.storage["volume"]
    total_pull = min(self.tank.storage["volume"], vqip["volume"])

    if total_pull < constants.FLOAT_ACCURACY:
        return self.empty_vqip()
    else:
        # Track total pull in pulled
        pulled = self.empty_vqip()
        # Iterate over queue
        if isinstance(self.tank.internal_arc.queue, dict):
            for t, v in self.tank.internal_arc.queue.items():
                # Pull proportionately
                t_pulled = self.v_change_vqip(
                    self.tank.internal_arc.queue[t],
                    v["volume"] * total_pull / total_storage,
                )
                # Reduce queue VQIPs
                self.tank.internal_arc.queue[t] = self.extract_vqip(
                    self.tank.internal_arc.queue[t], t_pulled
                )
                # Track pull
                pulled = self.sum_vqip(pulled, t_pulled)
            # Pull also from active storage
            a_pulled = self.v_change_vqip(
                self.tank.active_storage,
                self.tank.active_storage["volume"] * total_pull / total_storage,
            )
            self.tank.active_storage = self.extract_vqip(
                self.tank.active_storage, a_pulled
            )
            pulled = self.sum_vqip(pulled, a_pulled)

            # Recalculate storage
            self.tank.storage = self.extract_vqip(self.tank.storage, pulled)
            return pulled

push_set_timearea(vqip)

Push setting that enables timearea behaviour, (see init for description).Used to receive flow that is assumed to occur widely across some kind of catchment.

Parameters:

Name Type Description Default
vqip dict

A VQIP that has been pushed

required

Returns:

Name Type Description
reply dict

A VQIP amount that was not successfuly receivesd

Source code in wsimod\nodes\storage.py
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def push_set_timearea(self, vqip):
    """Push setting that enables timearea behaviour, (see __init__ for
    description).Used to receive flow that is assumed to occur widely across some
    kind of catchment.

    Args:
        vqip (dict): A VQIP that has been pushed

    Returns:
        reply (dict): A VQIP amount that was not successfuly receivesd
    """
    reply = self.empty_vqip()
    # Iterate over timearea diagram TODO timearea diagram behaviour be generalised
    # across nodes
    for time, normalised in self.timearea.items():
        vqip_ = self.v_change_vqip(vqip, vqip["volume"] * normalised)
        reply_ = self.tank.push_storage(vqip_, time=time)
        reply = self.sum_vqip(reply, reply_)
    return reply

Reservoir

Bases: Storage

Source code in wsimod\nodes\storage.py
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
class Reservoir(Storage):
    """"""

    def __init__(self, **kwargs):
        """Storage node that makes abstractions by calling pull_distributed.

        Functions intended to call in orchestration:
            make_abstractions (before any river routing)

        Key assumptions:
            - Conceptualised as a `Tank`.
            - Recharged only via pumped abstractions.
            - Evaporation/precipitation onto surface area currently ignored.
            - If `decays` are provided to model water quality transformations,
                see `core.py/DecayObj`.

        Input data and parameter requirements:
            - Tank `capacity`, `area`, and `datum`.
                _Units_: cubic metres, squared metres, metres
            - Optional dictionary of decays with pollutants as keys and decay
                parameters (a constant and a temperature sensitivity exponent) as
                values. _Units_: -
        """
        super().__init__(**kwargs)

    def make_abstractions(self):
        """Pulls water and updates tanks."""
        reply = self.pull_distributed(self.tank.get_excess())
        spill = self.tank.push_storage(reply)
        _ = self.tank.push_storage(spill, force=True)
        if spill["volume"] > constants.FLOAT_ACCURACY:
            print("Spill at reservoir by {0}".format(spill["volume"]))

__init__(**kwargs)

Storage node that makes abstractions by calling pull_distributed.

Functions intended to call in orchestration

make_abstractions (before any river routing)

Key assumptions
  • Conceptualised as a Tank.
  • Recharged only via pumped abstractions.
  • Evaporation/precipitation onto surface area currently ignored.
  • If decays are provided to model water quality transformations, see core.py/DecayObj.
Input data and parameter requirements
  • Tank capacity, area, and datum. Units: cubic metres, squared metres, metres
  • Optional dictionary of decays with pollutants as keys and decay parameters (a constant and a temperature sensitivity exponent) as values. Units: -
Source code in wsimod\nodes\storage.py
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
def __init__(self, **kwargs):
    """Storage node that makes abstractions by calling pull_distributed.

    Functions intended to call in orchestration:
        make_abstractions (before any river routing)

    Key assumptions:
        - Conceptualised as a `Tank`.
        - Recharged only via pumped abstractions.
        - Evaporation/precipitation onto surface area currently ignored.
        - If `decays` are provided to model water quality transformations,
            see `core.py/DecayObj`.

    Input data and parameter requirements:
        - Tank `capacity`, `area`, and `datum`.
            _Units_: cubic metres, squared metres, metres
        - Optional dictionary of decays with pollutants as keys and decay
            parameters (a constant and a temperature sensitivity exponent) as
            values. _Units_: -
    """
    super().__init__(**kwargs)

make_abstractions()

Pulls water and updates tanks.

Source code in wsimod\nodes\storage.py
983
984
985
986
987
988
989
def make_abstractions(self):
    """Pulls water and updates tanks."""
    reply = self.pull_distributed(self.tank.get_excess())
    spill = self.tank.push_storage(reply)
    _ = self.tank.push_storage(spill, force=True)
    if spill["volume"] > constants.FLOAT_ACCURACY:
        print("Spill at reservoir by {0}".format(spill["volume"]))

River

Bases: Storage

Source code in wsimod\nodes\storage.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
class River(Storage):
    """"""

    # TODO non-day timestep
    def __init__(
        self,
        depth=2,
        length=200,
        width=20,
        velocity=0.2 * constants.M_S_TO_M_DT,
        damp=0.1,
        mrf=0,
        **kwargs,
    ):
        """Node that contains extensive in-river biochemical processes.

        Args:
            depth (float, optional): River tank depth. Defaults to 2. length (float,
            optional): River tank length. Defaults to 200. width (float, optional):
            River tank width. Defaults to 20. velocity (float, optional): River velocity
            (if someone wants to calculate
                this on the fly that would also work). Defaults to
                0.2*constants.M_S_TO_M_DT.
            damp (float, optional): Flow delay and attentuation parameter. Defaults
                to 0.1.
            mrf (float, optional): Minimum required flow in river (volume per timestep),
                can limit pulls made to the river. Defaults to 0.

        Functions intended to call in orchestration:
            distribute

        Key assumptions:
             - River is conceptualised as a water tank that receives flows from various
                sources (e.g., runoffs from urban and rural land, baseflow from
                groundwater), interacts with water infrastructure (e.g., abstraction for
                irrigation and domestic supply, sewage and treated effluent discharge),
                and discharges flows downstream. It has length and width as shape
                parameters, average velocity to indicate flow speed and capacity to
                indicate the maximum storage limit.
             - Flows from different sources into rivers will fully mix. River tank is
               assumed to
                have delay and attenuation effects when generate outflows. These effects
                are simulated based on the average velocity.
             - In-river biochemical processes are simulated as sources/sinks of
               nutrients
                in the river tank, including - denitrification (for nitrogen) -
                phytoplankton absorption/release (for nitrogen and phosphorus) -
                macrophyte uptake (for nitrogen and phosphorus) These processes are
                affected by river temperature.

        Input data and parameter requirements:
             - depth, length, width
                _Units_: m
             - velocity
                _Units_: m/day
             - damping coefficient
                _Units_: -
             - minimum required flow
                _Units_: m3/day
        """
        # Set parameters
        self.depth = depth
        if depth != 2:
            warnings.warn(
                "warning: the depth parameter is unused by River nodes because it is \
		intended for capacity to be unbounded. It may be removed in a future version."
            )
        self.length = length  # [m]
        self.width = width  # [m]
        self.velocity = velocity  # [m/dt]
        self.damp = damp  # [>=0] flow delay and attenuation
        self.mrf = mrf
        area = length * width  # [m2]

        capacity = (
            constants.UNBOUNDED_CAPACITY
        )  # TODO might be depth * area if flood indunation is going to be simulated

        # Required in cases where 'area' conflicts with length*width
        kwargs["area"] = area
        # Required in cases where 'capacity' conflicts with depth*area
        kwargs["capacity"] = capacity

        super().__init__(**kwargs)

        # TODO check units TODO Will a user want to change any of these? Wide variety of
        # river parameters (from HYPE)
        self.uptake_PNratio = 1 / 7.2  # [-] P:N during crop uptake
        self.bulk_density = 1300  # [kg/m3] soil density
        self.denpar_w = 0.0015  # 0.001, # [kg/m2/day] reference denitrification rate
        # in water course
        self.T_wdays = 5  # [days] weighting constant for river temperature calculation
        # (similar to moving average period)
        self.halfsatINwater = (
            1.5 * constants.MG_L_TO_KG_M3
        )  # [kg/m3] half saturation parameter for denitrification in river
        self.T_10_days = []  # [degree C] average water temperature of 10 days
        self.T_20_days = []  # [degree C] average water temperature of 20 days
        self.TP_365_days = []  # [degree C] average water temperature of 20 days
        self.hsatTP = 0.05 * constants.MG_L_TO_KG_M3  # [kg/m3]
        self.limpppar = 0.1 * constants.MG_L_TO_KG_M3  # [kg/m3]
        self.prodNpar = 0.001  # [kg N/m3/day] nitrogen production/mineralisation rate
        self.prodPpar = (
            0.0001  # [kg N/m3/day] phosphorus production/mineralisation rate
        )
        self.muptNpar = 0.001  # [kg/m2/day] nitrogen macrophyte uptake rate
        self.muptPpar = 0.0001  # 0.01, # [kg/m2/day] phosphorus macrophyte uptake rate

        self.max_temp_lag = 20
        self.lagged_temperatures = []

        self.max_phosphorus_lag = 365
        self.lagged_total_phosphorus = []

        self.din_components = ["ammonia", "nitrate"]
        # TODO need a cleaner way to do this depending on whether e.g., nitrite is
        # included

        # Initialise paramters
        self.current_depth = 0  # [m]
        # self.river_temperature = 0 # [degree C] self.river_denitrification = 0 #
        # [kg/day] self.macrophyte_uptake_N = 0 # [kg/day] self.macrophyte_uptake_P = 0
        # # [kg/day] self.sediment_particulate_phosphorus_pool = 60000 # [kg]
        # self.sediment_pool = 1000000 # [kg] self.benthos_source_sink = 0 # [kg/day]
        # self.t_res = 0 # [day] self.outflow = self.empty_vqip()

        # Update end_teimstep
        self.end_timestep = self.end_timestep_

        # Update handlers
        self.push_set_handler["default"] = self.push_set_river
        self.push_check_handler["default"] = self.push_check_accept

        self.pull_check_handler["default"] = self.pull_check_river
        self.pull_set_handler["default"] = self.pull_set_river

        # TODO - RiparianBuffer
        self.pull_check_handler[("RiparianBuffer", "volume")] = self.pull_check_fp

        # Update mass balance
        self.bio_in = self.empty_vqip()
        self.bio_out = self.empty_vqip()

        self.mass_balance_in.append(lambda: self.bio_in)
        self.mass_balance_out.append(lambda: self.bio_out)

    # TODO something like this might be needed if you want sewers backing up from river
    # height... would need to incorporate expected river outflow def get_dt_excess(self,
    #     vqip = None): reply = self.empty_vqip() reply['volume'] =
    #     self.tank.get_excess()['volume'] + self.tank.get_avail()['volume'] *
    #     self.get_riverrc() if vqip is not None: reply['volume'] = min(vqip['volume'],
    #         reply['volume']) return reply

    # def push_set_river(self, vqip): vqip_ = vqip.copy() vqip_ =
    #     self.v_change_vqip(vqip_, min(vqip_['volume'],
    #     self.get_dt_excess()['volume'])) _ = self.tank.push_storage(vqip_, force=True)
    #     return self.extract_vqip(vqip, vqip_)

    def apply_overrides(self, overrides=Dict[str, Any]):
        """Override parameters.

        Enables a user to override any of the following parameters:
        timearea.

        Args:
            overrides (Dict[str, Any]): Dict describing which parameters should
                be overridden (keys) and new values (values). Defaults to {}.
        """
        overwrite_params = set(
            [
                "length",
                "width",
                "velocity",
                "damp",
                "mrf",
                "uptake_PNratio",
                "bulk_density",
                "denpar_w",
                "T_wdays",
                "halfsatINwater",
                "hsatTP",
                "limpppar",
                "prodNpar",
                "prodPpar",
                "muptNpar",
                "muptPpar",
                "max_temp_lag",
                "max_phosphorus_lag",
            ]
        )

        for param in overwrite_params.intersection(overrides.keys()):
            setattr(self, param, overrides.pop(param))

        if "area" in overrides.keys():
            warnings.warn(
                "WARNING: specifying area is depreciated in overrides \
		for river, please specify length and width instead"
            )
        overrides["area"] = self.length * self.width
        if "capacity" in overrides.keys():
            warnings.warn(
                "ERROR: specifying capacity is depreciated in overrides \
		for river, it is always set as unbounded capacity"
            )
        overrides["capacity"] = constants.UNBOUNDED_CAPACITY
        super().apply_overrides(overrides)

    def pull_check_river(self, vqip=None):
        """Check amount of water that can be pulled from river tank and upstream.

        Args:
            vqip (dict, optional): Maximum water required (only 'volume' is used)

        Returns:
            avail (dict): A VQIP amount that can be pulled
        """
        # Get storage
        avail = self.tank.get_avail()

        # Check incoming
        upstream = self.get_connected(direction="pull", of_type=["River", "Node"])
        avail["volume"] += upstream["avail"]

        # convert mrf from volume/timestep to discrete value
        mrf = self.mrf / self.get_riverrc()

        # Apply mrf
        avail_vol = max(avail["volume"] - mrf, 0)
        if vqip is None:
            avail = self.v_change_vqip(avail, avail_vol)
        else:
            avail = self.v_change_vqip(avail, min(avail_vol, vqip["volume"]))

        return avail

    def pull_set_river(self, vqip):
        """Pull from river tank and upstream, acknowledging MRF with pull_check.

        Args:
            vqip (dict): A VQIP amount to pull (only volume key used)

        Returns:
            (dict): A VQIP amount that was pulled
        """
        # Calculate available pull
        avail = self.pull_check_river(vqip)

        # Take first from tank
        pulled = self.tank.pull_storage(avail)

        # Take remaining from upstream
        to_pull = {"volume": avail["volume"] - pulled["volume"]}
        pulled_ = self.pull_distributed(to_pull, of_type=["River", "Node"])

        reply = self.sum_vqip(pulled, pulled_)

        return reply

    def push_set_river(self, vqip):
        """Push to river tank, currently forced.

        Args:
            vqip (dict): A VQIP amount to push

        Returns:
            (dict): A VQIP amount that was not successfully received
        """
        _ = self.tank.push_storage(vqip, force=True)
        return self.empty_vqip()

    def update_depth(self):
        """Recalculate depth."""
        self.current_depth = self.tank.storage["volume"] / self.area

    def get_din_pool(self):
        """Get total dissolved inorganic nitrogen from tank storage.

        Returns:
            (float): total din
        """
        return sum(
            [self.tank.storage[x] for x in self.din_components]
        )  # TODO + self.tank.storage['nitrite'] but nitrite might not be modelled...
        # need some ways to address this

    def biochemical_processes(self):
        """Runs all biochemical processes and updates pollutant amounts.

        Returns:
            in_ (dict): A VQIP amount that represents total gain in pollutant amounts
            out_ (dict): A VQIP amount that represents total loss in pollutant amounts
        """
        # TODO make more modular
        self.update_depth()

        self.tank.storage["temperature"] = (1 - 1 / self.T_wdays) * self.tank.storage[
            "temperature"
        ] + (1 / self.T_wdays) * self.get_data_input("temperature")

        # Update lagged temperatures
        if len(self.lagged_temperatures) > self.max_temp_lag:
            del self.lagged_temperatures[0]
        self.lagged_temperatures.append(self.tank.storage["temperature"])

        # Update lagged total phosphorus
        if len(self.lagged_total_phosphorus) > self.max_phosphorus_lag:
            del self.lagged_total_phosphorus[0]
        total_phosphorus = (
            self.tank.storage["phosphate"] + self.tank.storage["org-phosphorus"]
        )
        self.lagged_total_phosphorus.append(total_phosphorus)

        # Check if any water
        if self.tank.storage["volume"] < constants.FLOAT_ACCURACY:
            # Assume these only do something when there is water
            return (self.empty_vqip(), self.empty_vqip())

        if self.tank.storage["temperature"] <= 0:
            # Seems that these things are only active when above freezing
            return (self.empty_vqip(), self.empty_vqip())

        # Denitrification
        tempfcn = 2 ** ((self.tank.storage["temperature"] - 20) / 10)
        if self.tank.storage["temperature"] < 5:
            tempfcn *= self.tank.storage["temperature"] / 5

        din = self.get_din_pool()
        din_concentration = din / self.tank.storage["volume"]
        confcn = din_concentration / (
            din_concentration + self.halfsatINwater
        )  # [kg/m3]
        denitri_water = (
            self.denpar_w * self.area * tempfcn * confcn
        )  # [kg/day] #TODO convert to per DT

        river_denitrification = min(
            denitri_water, 0.5 * din
        )  # [kg/day] max 50% kan be denitrified
        din_ = din - river_denitrification  # [kg]

        # Update mass balance
        in_ = self.empty_vqip()
        out_ = self.empty_vqip()
        if din > 0:
            for pol in self.din_components:
                # denitrification
                loss = (din - din_) / din * self.tank.storage[pol]
                out_[pol] += loss
                self.tank.storage[pol] -= loss

        din = self.get_din_pool()

        # Calculate moving averages TODO generalise
        temp_10_day = sum(self.lagged_temperatures[-10:]) / 10
        temp_20_day = sum(self.lagged_temperatures[-20:]) / 20
        total_phos_365_day = sum(self.lagged_total_phosphorus) / self.max_phosphorus_lag

        # Calculate coefficients
        tempfcn = (
            (self.tank.storage["temperature"]) / 20 * (temp_10_day - temp_20_day) / 5
        )
        if (total_phos_365_day - self.limpppar + self.hsatTP) > 0:
            totalphosfcn = (total_phos_365_day - self.limpppar) / (
                total_phos_365_day - self.limpppar + self.hsatTP
            )
        else:
            totalphosfcn = 0

        # Mineralisation/production TODO this feels like it could be much tidier
        minprodN = (
            self.prodNpar * totalphosfcn * tempfcn * self.area * self.current_depth
        )  # [kg N/day]
        minprodP = (
            self.prodPpar
            * totalphosfcn
            * tempfcn
            * self.area
            * self.current_depth
            * self.uptake_PNratio
        )  # [kg N/day]
        if minprodN > 0:
            # production (inorg -> org)
            minprodN = min(
                0.5 * din, minprodN
            )  # only half pool can be used for production
            minprodP = min(
                0.5 * self.tank.storage["phosphate"], minprodP
            )  # only half pool can be used for production

            # Update mass balance
            out_["phosphate"] = minprodP
            self.tank.storage["phosphate"] -= minprodP
            in_["org-phosphorus"] = minprodP
            self.tank.storage["org-phosphorus"] += minprodP
            if din > 0:
                for pol in self.din_components:
                    loss = minprodN * self.tank.storage[pol] / din
                    out_[pol] += loss
                    self.tank.storage[pol] -= loss

            in_["org-nitrogen"] = minprodN
            self.tank.storage["org-nitrogen"] += minprodN

        else:
            # mineralisation (org -> inorg)
            minprodN = min(0.5 * self.tank.storage["org-nitrogen"], -minprodN)
            minprodP = min(0.5 * self.tank.storage["org-phosphorus"], -minprodP)

            # Update mass balance
            in_["phosphate"] = minprodP
            self.tank.storage["phosphate"] += minprodP
            out_["org-phosphorus"] = minprodP
            self.tank.storage["org-phosphorus"] -= minprodP
            if din > 0:
                for pol in self.din_components:
                    gain = minprodN * self.tank.storage[pol] / din
                    in_[pol] += gain
                    self.tank.storage[pol] += gain

            out_["org-nitrogen"] = minprodN
            self.tank.storage["org-nitrogen"] -= minprodN

        din = self.get_din_pool()

        # macrophyte uptake temperature dependence factor
        tempfcn1 = (max(0, self.tank.storage["temperature"]) / 20) ** 0.3
        tempfcn2 = (self.tank.storage["temperature"] - temp_20_day) / 5
        tempfcn = max(0, tempfcn1 * tempfcn2)

        macrouptN = self.muptNpar * tempfcn * self.area  # [kg/day]
        macrophyte_uptake_N = min(0.5 * din, macrouptN)
        if din > 0:
            for pol in self.din_components:
                loss = macrophyte_uptake_N * self.tank.storage[pol] / din
                out_[pol] += loss
                self.tank.storage[pol] -= loss

        macrouptP = (
            self.muptPpar * tempfcn * max(0, totalphosfcn) * self.area
        )  # [kg/day]
        macrophyte_uptake_P = min(0.5 * self.tank.storage["phosphate"], macrouptP)
        out_["phosphate"] += macrophyte_uptake_P
        self.tank.storage["phosphate"] -= macrophyte_uptake_P

        # TODO source/sink for benthos sediment P suspension/resuspension
        return in_, out_

    def get_riverrc(self):
        """Get river outflow coefficient (i.e., how much water leaves the tank in this
        timestep).

        Returns:
            riverrc (float): outflow coeffficient
        """
        # Calculate travel time
        total_time = self.length / self.velocity
        # Apply damp
        kt = self.damp * total_time  # [day]
        if kt != 0:
            riverrc = 1 - kt + kt * exp(-1 / kt)  # [-]
        else:
            riverrc = 1
        return riverrc

    def calculate_discharge(self):
        """"""
        if "nitrate" in constants.POLLUTANTS:
            # TODO clumsy Run biochemical processes
            in_, out_ = self.biochemical_processes()
            # Mass balance
            self.bio_in = in_
            self.bio_out = out_

    def distribute(self):
        """Run biochemical processes, track mass balance, and distribute water."""
        # self.calculate_discharge() Get outflow
        outflow = self.tank.pull_storage(
            {"volume": self.tank.storage["volume"] * self.get_riverrc()}
        )
        # Distribute outflow
        reply = self.push_distributed(outflow, of_type=["River", "Node", "Waste"])
        _ = self.tank.push_storage(reply, force=True)
        if reply["volume"] > constants.FLOAT_ACCURACY:
            print("river cant push: {0}".format(reply["volume"]))

    def pull_check_fp(self, vqip=None):
        """

        Args:
            vqip:

        Returns:

        """
        # TODO Pull checking for riparian buffer, needs updating update river depth
        self.update_depth()
        return self.current_depth, self.area, self.width, self.river_tank.storage

    def end_timestep_(self):
        """Update state variables."""
        self.tank.end_timestep()
        self.bio_in = self.empty_vqip()
        self.bio_out = self.empty_vqip()

__init__(depth=2, length=200, width=20, velocity=0.2 * constants.M_S_TO_M_DT, damp=0.1, mrf=0, **kwargs)

Node that contains extensive in-river biochemical processes.

Parameters:

Name Type Description Default
depth float

River tank depth. Defaults to 2. length (float,

2
optional)

River tank length. Defaults to 200. width (float, optional):

required
River tank width. Defaults to 20. velocity (float

River velocity

required
damp float

Flow delay and attentuation parameter. Defaults to 0.1.

0.1
mrf float

Minimum required flow in river (volume per timestep), can limit pulls made to the river. Defaults to 0.

0
Functions intended to call in orchestration

distribute

Key assumptions
  • River is conceptualised as a water tank that receives flows from various sources (e.g., runoffs from urban and rural land, baseflow from groundwater), interacts with water infrastructure (e.g., abstraction for irrigation and domestic supply, sewage and treated effluent discharge), and discharges flows downstream. It has length and width as shape parameters, average velocity to indicate flow speed and capacity to indicate the maximum storage limit.
  • Flows from different sources into rivers will fully mix. River tank is assumed to have delay and attenuation effects when generate outflows. These effects are simulated based on the average velocity.
  • In-river biochemical processes are simulated as sources/sinks of nutrients in the river tank, including - denitrification (for nitrogen) - phytoplankton absorption/release (for nitrogen and phosphorus) - macrophyte uptake (for nitrogen and phosphorus) These processes are affected by river temperature.
Input data and parameter requirements
  • depth, length, width Units: m
  • velocity Units: m/day
  • damping coefficient Units: -
  • minimum required flow Units: m3/day
Source code in wsimod\nodes\storage.py
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    def __init__(
        self,
        depth=2,
        length=200,
        width=20,
        velocity=0.2 * constants.M_S_TO_M_DT,
        damp=0.1,
        mrf=0,
        **kwargs,
    ):
        """Node that contains extensive in-river biochemical processes.

        Args:
            depth (float, optional): River tank depth. Defaults to 2. length (float,
            optional): River tank length. Defaults to 200. width (float, optional):
            River tank width. Defaults to 20. velocity (float, optional): River velocity
            (if someone wants to calculate
                this on the fly that would also work). Defaults to
                0.2*constants.M_S_TO_M_DT.
            damp (float, optional): Flow delay and attentuation parameter. Defaults
                to 0.1.
            mrf (float, optional): Minimum required flow in river (volume per timestep),
                can limit pulls made to the river. Defaults to 0.

        Functions intended to call in orchestration:
            distribute

        Key assumptions:
             - River is conceptualised as a water tank that receives flows from various
                sources (e.g., runoffs from urban and rural land, baseflow from
                groundwater), interacts with water infrastructure (e.g., abstraction for
                irrigation and domestic supply, sewage and treated effluent discharge),
                and discharges flows downstream. It has length and width as shape
                parameters, average velocity to indicate flow speed and capacity to
                indicate the maximum storage limit.
             - Flows from different sources into rivers will fully mix. River tank is
               assumed to
                have delay and attenuation effects when generate outflows. These effects
                are simulated based on the average velocity.
             - In-river biochemical processes are simulated as sources/sinks of
               nutrients
                in the river tank, including - denitrification (for nitrogen) -
                phytoplankton absorption/release (for nitrogen and phosphorus) -
                macrophyte uptake (for nitrogen and phosphorus) These processes are
                affected by river temperature.

        Input data and parameter requirements:
             - depth, length, width
                _Units_: m
             - velocity
                _Units_: m/day
             - damping coefficient
                _Units_: -
             - minimum required flow
                _Units_: m3/day
        """
        # Set parameters
        self.depth = depth
        if depth != 2:
            warnings.warn(
                "warning: the depth parameter is unused by River nodes because it is \
		intended for capacity to be unbounded. It may be removed in a future version."
            )
        self.length = length  # [m]
        self.width = width  # [m]
        self.velocity = velocity  # [m/dt]
        self.damp = damp  # [>=0] flow delay and attenuation
        self.mrf = mrf
        area = length * width  # [m2]

        capacity = (
            constants.UNBOUNDED_CAPACITY
        )  # TODO might be depth * area if flood indunation is going to be simulated

        # Required in cases where 'area' conflicts with length*width
        kwargs["area"] = area
        # Required in cases where 'capacity' conflicts with depth*area
        kwargs["capacity"] = capacity

        super().__init__(**kwargs)

        # TODO check units TODO Will a user want to change any of these? Wide variety of
        # river parameters (from HYPE)
        self.uptake_PNratio = 1 / 7.2  # [-] P:N during crop uptake
        self.bulk_density = 1300  # [kg/m3] soil density
        self.denpar_w = 0.0015  # 0.001, # [kg/m2/day] reference denitrification rate
        # in water course
        self.T_wdays = 5  # [days] weighting constant for river temperature calculation
        # (similar to moving average period)
        self.halfsatINwater = (
            1.5 * constants.MG_L_TO_KG_M3
        )  # [kg/m3] half saturation parameter for denitrification in river
        self.T_10_days = []  # [degree C] average water temperature of 10 days
        self.T_20_days = []  # [degree C] average water temperature of 20 days
        self.TP_365_days = []  # [degree C] average water temperature of 20 days
        self.hsatTP = 0.05 * constants.MG_L_TO_KG_M3  # [kg/m3]
        self.limpppar = 0.1 * constants.MG_L_TO_KG_M3  # [kg/m3]
        self.prodNpar = 0.001  # [kg N/m3/day] nitrogen production/mineralisation rate
        self.prodPpar = (
            0.0001  # [kg N/m3/day] phosphorus production/mineralisation rate
        )
        self.muptNpar = 0.001  # [kg/m2/day] nitrogen macrophyte uptake rate
        self.muptPpar = 0.0001  # 0.01, # [kg/m2/day] phosphorus macrophyte uptake rate

        self.max_temp_lag = 20
        self.lagged_temperatures = []

        self.max_phosphorus_lag = 365
        self.lagged_total_phosphorus = []

        self.din_components = ["ammonia", "nitrate"]
        # TODO need a cleaner way to do this depending on whether e.g., nitrite is
        # included

        # Initialise paramters
        self.current_depth = 0  # [m]
        # self.river_temperature = 0 # [degree C] self.river_denitrification = 0 #
        # [kg/day] self.macrophyte_uptake_N = 0 # [kg/day] self.macrophyte_uptake_P = 0
        # # [kg/day] self.sediment_particulate_phosphorus_pool = 60000 # [kg]
        # self.sediment_pool = 1000000 # [kg] self.benthos_source_sink = 0 # [kg/day]
        # self.t_res = 0 # [day] self.outflow = self.empty_vqip()

        # Update end_teimstep
        self.end_timestep = self.end_timestep_

        # Update handlers
        self.push_set_handler["default"] = self.push_set_river
        self.push_check_handler["default"] = self.push_check_accept

        self.pull_check_handler["default"] = self.pull_check_river
        self.pull_set_handler["default"] = self.pull_set_river

        # TODO - RiparianBuffer
        self.pull_check_handler[("RiparianBuffer", "volume")] = self.pull_check_fp

        # Update mass balance
        self.bio_in = self.empty_vqip()
        self.bio_out = self.empty_vqip()

        self.mass_balance_in.append(lambda: self.bio_in)
        self.mass_balance_out.append(lambda: self.bio_out)

apply_overrides(overrides=Dict[str, Any])

Override parameters.

Enables a user to override any of the following parameters: timearea.

Parameters:

Name Type Description Default
overrides Dict[str, Any]

Dict describing which parameters should be overridden (keys) and new values (values). Defaults to {}.

Dict[str, Any]
Source code in wsimod\nodes\storage.py
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    def apply_overrides(self, overrides=Dict[str, Any]):
        """Override parameters.

        Enables a user to override any of the following parameters:
        timearea.

        Args:
            overrides (Dict[str, Any]): Dict describing which parameters should
                be overridden (keys) and new values (values). Defaults to {}.
        """
        overwrite_params = set(
            [
                "length",
                "width",
                "velocity",
                "damp",
                "mrf",
                "uptake_PNratio",
                "bulk_density",
                "denpar_w",
                "T_wdays",
                "halfsatINwater",
                "hsatTP",
                "limpppar",
                "prodNpar",
                "prodPpar",
                "muptNpar",
                "muptPpar",
                "max_temp_lag",
                "max_phosphorus_lag",
            ]
        )

        for param in overwrite_params.intersection(overrides.keys()):
            setattr(self, param, overrides.pop(param))

        if "area" in overrides.keys():
            warnings.warn(
                "WARNING: specifying area is depreciated in overrides \
		for river, please specify length and width instead"
            )
        overrides["area"] = self.length * self.width
        if "capacity" in overrides.keys():
            warnings.warn(
                "ERROR: specifying capacity is depreciated in overrides \
		for river, it is always set as unbounded capacity"
            )
        overrides["capacity"] = constants.UNBOUNDED_CAPACITY
        super().apply_overrides(overrides)

biochemical_processes()

Runs all biochemical processes and updates pollutant amounts.

Returns:

Name Type Description
in_ dict

A VQIP amount that represents total gain in pollutant amounts

out_ dict

A VQIP amount that represents total loss in pollutant amounts

Source code in wsimod\nodes\storage.py
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
def biochemical_processes(self):
    """Runs all biochemical processes and updates pollutant amounts.

    Returns:
        in_ (dict): A VQIP amount that represents total gain in pollutant amounts
        out_ (dict): A VQIP amount that represents total loss in pollutant amounts
    """
    # TODO make more modular
    self.update_depth()

    self.tank.storage["temperature"] = (1 - 1 / self.T_wdays) * self.tank.storage[
        "temperature"
    ] + (1 / self.T_wdays) * self.get_data_input("temperature")

    # Update lagged temperatures
    if len(self.lagged_temperatures) > self.max_temp_lag:
        del self.lagged_temperatures[0]
    self.lagged_temperatures.append(self.tank.storage["temperature"])

    # Update lagged total phosphorus
    if len(self.lagged_total_phosphorus) > self.max_phosphorus_lag:
        del self.lagged_total_phosphorus[0]
    total_phosphorus = (
        self.tank.storage["phosphate"] + self.tank.storage["org-phosphorus"]
    )
    self.lagged_total_phosphorus.append(total_phosphorus)

    # Check if any water
    if self.tank.storage["volume"] < constants.FLOAT_ACCURACY:
        # Assume these only do something when there is water
        return (self.empty_vqip(), self.empty_vqip())

    if self.tank.storage["temperature"] <= 0:
        # Seems that these things are only active when above freezing
        return (self.empty_vqip(), self.empty_vqip())

    # Denitrification
    tempfcn = 2 ** ((self.tank.storage["temperature"] - 20) / 10)
    if self.tank.storage["temperature"] < 5:
        tempfcn *= self.tank.storage["temperature"] / 5

    din = self.get_din_pool()
    din_concentration = din / self.tank.storage["volume"]
    confcn = din_concentration / (
        din_concentration + self.halfsatINwater
    )  # [kg/m3]
    denitri_water = (
        self.denpar_w * self.area * tempfcn * confcn
    )  # [kg/day] #TODO convert to per DT

    river_denitrification = min(
        denitri_water, 0.5 * din
    )  # [kg/day] max 50% kan be denitrified
    din_ = din - river_denitrification  # [kg]

    # Update mass balance
    in_ = self.empty_vqip()
    out_ = self.empty_vqip()
    if din > 0:
        for pol in self.din_components:
            # denitrification
            loss = (din - din_) / din * self.tank.storage[pol]
            out_[pol] += loss
            self.tank.storage[pol] -= loss

    din = self.get_din_pool()

    # Calculate moving averages TODO generalise
    temp_10_day = sum(self.lagged_temperatures[-10:]) / 10
    temp_20_day = sum(self.lagged_temperatures[-20:]) / 20
    total_phos_365_day = sum(self.lagged_total_phosphorus) / self.max_phosphorus_lag

    # Calculate coefficients
    tempfcn = (
        (self.tank.storage["temperature"]) / 20 * (temp_10_day - temp_20_day) / 5
    )
    if (total_phos_365_day - self.limpppar + self.hsatTP) > 0:
        totalphosfcn = (total_phos_365_day - self.limpppar) / (
            total_phos_365_day - self.limpppar + self.hsatTP
        )
    else:
        totalphosfcn = 0

    # Mineralisation/production TODO this feels like it could be much tidier
    minprodN = (
        self.prodNpar * totalphosfcn * tempfcn * self.area * self.current_depth
    )  # [kg N/day]
    minprodP = (
        self.prodPpar
        * totalphosfcn
        * tempfcn
        * self.area
        * self.current_depth
        * self.uptake_PNratio
    )  # [kg N/day]
    if minprodN > 0:
        # production (inorg -> org)
        minprodN = min(
            0.5 * din, minprodN
        )  # only half pool can be used for production
        minprodP = min(
            0.5 * self.tank.storage["phosphate"], minprodP
        )  # only half pool can be used for production

        # Update mass balance
        out_["phosphate"] = minprodP
        self.tank.storage["phosphate"] -= minprodP
        in_["org-phosphorus"] = minprodP
        self.tank.storage["org-phosphorus"] += minprodP
        if din > 0:
            for pol in self.din_components:
                loss = minprodN * self.tank.storage[pol] / din
                out_[pol] += loss
                self.tank.storage[pol] -= loss

        in_["org-nitrogen"] = minprodN
        self.tank.storage["org-nitrogen"] += minprodN

    else:
        # mineralisation (org -> inorg)
        minprodN = min(0.5 * self.tank.storage["org-nitrogen"], -minprodN)
        minprodP = min(0.5 * self.tank.storage["org-phosphorus"], -minprodP)

        # Update mass balance
        in_["phosphate"] = minprodP
        self.tank.storage["phosphate"] += minprodP
        out_["org-phosphorus"] = minprodP
        self.tank.storage["org-phosphorus"] -= minprodP
        if din > 0:
            for pol in self.din_components:
                gain = minprodN * self.tank.storage[pol] / din
                in_[pol] += gain
                self.tank.storage[pol] += gain

        out_["org-nitrogen"] = minprodN
        self.tank.storage["org-nitrogen"] -= minprodN

    din = self.get_din_pool()

    # macrophyte uptake temperature dependence factor
    tempfcn1 = (max(0, self.tank.storage["temperature"]) / 20) ** 0.3
    tempfcn2 = (self.tank.storage["temperature"] - temp_20_day) / 5
    tempfcn = max(0, tempfcn1 * tempfcn2)

    macrouptN = self.muptNpar * tempfcn * self.area  # [kg/day]
    macrophyte_uptake_N = min(0.5 * din, macrouptN)
    if din > 0:
        for pol in self.din_components:
            loss = macrophyte_uptake_N * self.tank.storage[pol] / din
            out_[pol] += loss
            self.tank.storage[pol] -= loss

    macrouptP = (
        self.muptPpar * tempfcn * max(0, totalphosfcn) * self.area
    )  # [kg/day]
    macrophyte_uptake_P = min(0.5 * self.tank.storage["phosphate"], macrouptP)
    out_["phosphate"] += macrophyte_uptake_P
    self.tank.storage["phosphate"] -= macrophyte_uptake_P

    # TODO source/sink for benthos sediment P suspension/resuspension
    return in_, out_

calculate_discharge()

Source code in wsimod\nodes\storage.py
917
918
919
920
921
922
923
924
def calculate_discharge(self):
    """"""
    if "nitrate" in constants.POLLUTANTS:
        # TODO clumsy Run biochemical processes
        in_, out_ = self.biochemical_processes()
        # Mass balance
        self.bio_in = in_
        self.bio_out = out_

distribute()

Run biochemical processes, track mass balance, and distribute water.

Source code in wsimod\nodes\storage.py
926
927
928
929
930
931
932
933
934
935
936
def distribute(self):
    """Run biochemical processes, track mass balance, and distribute water."""
    # self.calculate_discharge() Get outflow
    outflow = self.tank.pull_storage(
        {"volume": self.tank.storage["volume"] * self.get_riverrc()}
    )
    # Distribute outflow
    reply = self.push_distributed(outflow, of_type=["River", "Node", "Waste"])
    _ = self.tank.push_storage(reply, force=True)
    if reply["volume"] > constants.FLOAT_ACCURACY:
        print("river cant push: {0}".format(reply["volume"]))

end_timestep_()

Update state variables.

Source code in wsimod\nodes\storage.py
951
952
953
954
955
def end_timestep_(self):
    """Update state variables."""
    self.tank.end_timestep()
    self.bio_in = self.empty_vqip()
    self.bio_out = self.empty_vqip()

get_din_pool()

Get total dissolved inorganic nitrogen from tank storage.

Returns:

Type Description
float

total din

Source code in wsimod\nodes\storage.py
727
728
729
730
731
732
733
734
735
def get_din_pool(self):
    """Get total dissolved inorganic nitrogen from tank storage.

    Returns:
        (float): total din
    """
    return sum(
        [self.tank.storage[x] for x in self.din_components]
    )  # TODO + self.tank.storage['nitrite'] but nitrite might not be modelled...

get_riverrc()

Get river outflow coefficient (i.e., how much water leaves the tank in this timestep).

Returns:

Name Type Description
riverrc float

outflow coeffficient

Source code in wsimod\nodes\storage.py
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
def get_riverrc(self):
    """Get river outflow coefficient (i.e., how much water leaves the tank in this
    timestep).

    Returns:
        riverrc (float): outflow coeffficient
    """
    # Calculate travel time
    total_time = self.length / self.velocity
    # Apply damp
    kt = self.damp * total_time  # [day]
    if kt != 0:
        riverrc = 1 - kt + kt * exp(-1 / kt)  # [-]
    else:
        riverrc = 1
    return riverrc

pull_check_fp(vqip=None)

Parameters:

Name Type Description Default
vqip
None

Returns:

Source code in wsimod\nodes\storage.py
938
939
940
941
942
943
944
945
946
947
948
949
def pull_check_fp(self, vqip=None):
    """

    Args:
        vqip:

    Returns:

    """
    # TODO Pull checking for riparian buffer, needs updating update river depth
    self.update_depth()
    return self.current_depth, self.area, self.width, self.river_tank.storage

pull_check_river(vqip=None)

Check amount of water that can be pulled from river tank and upstream.

Parameters:

Name Type Description Default
vqip dict

Maximum water required (only 'volume' is used)

None

Returns:

Name Type Description
avail dict

A VQIP amount that can be pulled

Source code in wsimod\nodes\storage.py
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
def pull_check_river(self, vqip=None):
    """Check amount of water that can be pulled from river tank and upstream.

    Args:
        vqip (dict, optional): Maximum water required (only 'volume' is used)

    Returns:
        avail (dict): A VQIP amount that can be pulled
    """
    # Get storage
    avail = self.tank.get_avail()

    # Check incoming
    upstream = self.get_connected(direction="pull", of_type=["River", "Node"])
    avail["volume"] += upstream["avail"]

    # convert mrf from volume/timestep to discrete value
    mrf = self.mrf / self.get_riverrc()

    # Apply mrf
    avail_vol = max(avail["volume"] - mrf, 0)
    if vqip is None:
        avail = self.v_change_vqip(avail, avail_vol)
    else:
        avail = self.v_change_vqip(avail, min(avail_vol, vqip["volume"]))

    return avail

pull_set_river(vqip)

Pull from river tank and upstream, acknowledging MRF with pull_check.

Parameters:

Name Type Description Default
vqip dict

A VQIP amount to pull (only volume key used)

required

Returns:

Type Description
dict

A VQIP amount that was pulled

Source code in wsimod\nodes\storage.py
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
def pull_set_river(self, vqip):
    """Pull from river tank and upstream, acknowledging MRF with pull_check.

    Args:
        vqip (dict): A VQIP amount to pull (only volume key used)

    Returns:
        (dict): A VQIP amount that was pulled
    """
    # Calculate available pull
    avail = self.pull_check_river(vqip)

    # Take first from tank
    pulled = self.tank.pull_storage(avail)

    # Take remaining from upstream
    to_pull = {"volume": avail["volume"] - pulled["volume"]}
    pulled_ = self.pull_distributed(to_pull, of_type=["River", "Node"])

    reply = self.sum_vqip(pulled, pulled_)

    return reply

push_set_river(vqip)

Push to river tank, currently forced.

Parameters:

Name Type Description Default
vqip dict

A VQIP amount to push

required

Returns:

Type Description
dict

A VQIP amount that was not successfully received

Source code in wsimod\nodes\storage.py
711
712
713
714
715
716
717
718
719
720
721
def push_set_river(self, vqip):
    """Push to river tank, currently forced.

    Args:
        vqip (dict): A VQIP amount to push

    Returns:
        (dict): A VQIP amount that was not successfully received
    """
    _ = self.tank.push_storage(vqip, force=True)
    return self.empty_vqip()

update_depth()

Recalculate depth.

Source code in wsimod\nodes\storage.py
723
724
725
def update_depth(self):
    """Recalculate depth."""
    self.current_depth = self.tank.storage["volume"] / self.area

RiverReservoir

Bases: Reservoir

Source code in wsimod\nodes\storage.py
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
class RiverReservoir(Reservoir):
    """"""

    def __init__(self, environmental_flow=0, **kwargs):
        """A reservoir with a natural river inflow, includes an environmental downstream
        flow to satisfy.

        Args:
            environmental_flow (float, optional): Downstream environmental flow.
                Defaults to 0.

        Functions intended to call in orchestration:
                make_abstractions (if any)

                satisfy_environmental (before river routing.. possibly before
                    downstream river abstractions depending on licence)

        Key assumptions:
            - Conceptualised as a `Tank`.
            - Recharged via pumped abstractions and receives water from
                inflowing arcs.
            - Reservoir aims to satisfy a static `environmental_flow`.
            - If tank capacity is exceeded, reservoir spills downstream
                towards `nodes.py/Node`, `storage.py/River` or `waste.py/Waste` nodes.
                Spill counts towards `environmental_flow`.
            - Evaporation/precipitation onto surface area currently ignored.
            - Currently, if a reservoir satisfies a pull from a downstream
                node, it does __not__ count towards `environmental_flow`.
            - If `decays` are provided to model water quality transformations,
                see `core.py/DecayObj`.

        Input data and parameter requirements:
            - Tank `capacity`, `area`, and `datum`.
                _Units_: cubic metres, squared metres, metres
            - `environmental_flow`
                _Units_: cubic metres/timestep
            - Optional dictionary of decays with pollutants as keys and decay
                parameters (a constant and a temperature sensitivity exponent) as
                values. _Units_: -
        """
        # Parameters
        self.environmental_flow = environmental_flow
        super().__init__(**kwargs)

        # State variables
        self.total_environmental_satisfied = 0

        self.push_set_handler["default"] = self.push_set_river_reservoir
        self.push_check_handler["default"] = self.push_check_river_reservoir
        self.end_timestep = self.end_timestep_

        self.__class__.__name__ = "Reservoir"

    def apply_overrides(self, overrides=Dict[str, Any]):
        """Override parameters.

        Enables a user to override any of the following parameters:
        environmental_flow.

        Args:
            overrides (Dict[str, Any]): Dict describing which parameters should
                be overridden (keys) and new values (values). Defaults to {}.
        """
        self.environmental_flow = overrides.pop(
            "environmental_flow", self.environmental_flow
        )
        super().apply_overrides(overrides)

    def push_set_river_reservoir(self, vqip):
        """Receive water.

        Args:
            vqip (dict): A VQIP amount to be received

        Returns:
            reply (dict): A VQIP amount that was not successfully received
        """
        # Apply normal reservoir storage We do this under the assumption that spill is
        # mixed in with the reservoir If the reservoir can't spill everything you'll get
        # some weird numbers in reply, but if your reservoir can't spill as much as you
        # like then you should probably be pushing the right amount through
        # push_check_river_reservoir Some cunning could probably avoid this by checking
        # vqip, but this is a serious edge case
        _ = self.tank.push_storage(vqip, force=True)
        spill = self.tank.pull_ponded()

        # Send spill downstream
        reply = self.push_distributed(spill, of_type=["Node", "River", "Waste"])

        # Use spill to satisfy downstream flow
        self.total_environmental_satisfied += spill["volume"] - reply["volume"]

        return reply

    def push_check_river_reservoir(self, vqip=None):
        """A push check to receive water, assumes spill may occur and checks downstream
        capacity.

        Args:
            vqip (dict, optional): A VQIP that can be used to limit the volume in
                the return value (only volume key is used). Defaults to None.

        Returns:
            excess (dict): A VQIP amount of water that cannot be received
        """
        # Check downstream capacity (i.e., that would be spilled)
        downstream_availability = self.get_connected(
            direction="push", of_type=["Node", "River", "Waste"]
        )["avail"]
        # Check excess capacity in the reservoir
        excess = self.tank.get_excess()
        # Combine excess and downstream in response
        new_v = excess["volume"] + downstream_availability
        if vqip is not None:
            new_v = min(vqip["volume"], new_v)
        # Update to vqip
        excess = self.v_change_vqip(excess, new_v)

        return excess

    def satisfy_environmental(self):
        """Satisfy environmental flow downstream."""
        # Calculate how much environmental flow is yet to satisfy #(some may have been
        # already if pull-and-take abstractions have taken place)
        to_satisfy = max(
            self.environmental_flow - self.total_environmental_satisfied, 0
        )
        # Pull from tank
        environmental = self.tank.pull_storage({"volume": to_satisfy})
        # Send downstream
        reply = self.push_distributed(environmental)
        _ = self.tank.push_storage(reply, force=True)
        if reply["volume"] > constants.FLOAT_ACCURACY:
            print("warning: environmental not able to push")

        # Update satisfaction
        self.total_environmental_satisfied += environmental["volume"]

    def end_timestep_(self):
        """Udpate state varibles."""
        self.tank.end_timestep()
        self.total_environmental_satisfied = 0

__init__(environmental_flow=0, **kwargs)

A reservoir with a natural river inflow, includes an environmental downstream flow to satisfy.

Parameters:

Name Type Description Default
environmental_flow float

Downstream environmental flow. Defaults to 0.

0
Functions intended to call in orchestration

make_abstractions (if any)

satisfy_environmental (before river routing.. possibly before downstream river abstractions depending on licence)

Key assumptions
  • Conceptualised as a Tank.
  • Recharged via pumped abstractions and receives water from inflowing arcs.
  • Reservoir aims to satisfy a static environmental_flow.
  • If tank capacity is exceeded, reservoir spills downstream towards nodes.py/Node, storage.py/River or waste.py/Waste nodes. Spill counts towards environmental_flow.
  • Evaporation/precipitation onto surface area currently ignored.
  • Currently, if a reservoir satisfies a pull from a downstream node, it does not count towards environmental_flow.
  • If decays are provided to model water quality transformations, see core.py/DecayObj.
Input data and parameter requirements
  • Tank capacity, area, and datum. Units: cubic metres, squared metres, metres
  • environmental_flow Units: cubic metres/timestep
  • Optional dictionary of decays with pollutants as keys and decay parameters (a constant and a temperature sensitivity exponent) as values. Units: -
Source code in wsimod\nodes\storage.py
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
def __init__(self, environmental_flow=0, **kwargs):
    """A reservoir with a natural river inflow, includes an environmental downstream
    flow to satisfy.

    Args:
        environmental_flow (float, optional): Downstream environmental flow.
            Defaults to 0.

    Functions intended to call in orchestration:
            make_abstractions (if any)

            satisfy_environmental (before river routing.. possibly before
                downstream river abstractions depending on licence)

    Key assumptions:
        - Conceptualised as a `Tank`.
        - Recharged via pumped abstractions and receives water from
            inflowing arcs.
        - Reservoir aims to satisfy a static `environmental_flow`.
        - If tank capacity is exceeded, reservoir spills downstream
            towards `nodes.py/Node`, `storage.py/River` or `waste.py/Waste` nodes.
            Spill counts towards `environmental_flow`.
        - Evaporation/precipitation onto surface area currently ignored.
        - Currently, if a reservoir satisfies a pull from a downstream
            node, it does __not__ count towards `environmental_flow`.
        - If `decays` are provided to model water quality transformations,
            see `core.py/DecayObj`.

    Input data and parameter requirements:
        - Tank `capacity`, `area`, and `datum`.
            _Units_: cubic metres, squared metres, metres
        - `environmental_flow`
            _Units_: cubic metres/timestep
        - Optional dictionary of decays with pollutants as keys and decay
            parameters (a constant and a temperature sensitivity exponent) as
            values. _Units_: -
    """
    # Parameters
    self.environmental_flow = environmental_flow
    super().__init__(**kwargs)

    # State variables
    self.total_environmental_satisfied = 0

    self.push_set_handler["default"] = self.push_set_river_reservoir
    self.push_check_handler["default"] = self.push_check_river_reservoir
    self.end_timestep = self.end_timestep_

    self.__class__.__name__ = "Reservoir"

apply_overrides(overrides=Dict[str, Any])

Override parameters.

Enables a user to override any of the following parameters: environmental_flow.

Parameters:

Name Type Description Default
overrides Dict[str, Any]

Dict describing which parameters should be overridden (keys) and new values (values). Defaults to {}.

Dict[str, Any]
Source code in wsimod\nodes\storage.py
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
def apply_overrides(self, overrides=Dict[str, Any]):
    """Override parameters.

    Enables a user to override any of the following parameters:
    environmental_flow.

    Args:
        overrides (Dict[str, Any]): Dict describing which parameters should
            be overridden (keys) and new values (values). Defaults to {}.
    """
    self.environmental_flow = overrides.pop(
        "environmental_flow", self.environmental_flow
    )
    super().apply_overrides(overrides)

end_timestep_()

Udpate state varibles.

Source code in wsimod\nodes\storage.py
1130
1131
1132
1133
def end_timestep_(self):
    """Udpate state varibles."""
    self.tank.end_timestep()
    self.total_environmental_satisfied = 0

push_check_river_reservoir(vqip=None)

A push check to receive water, assumes spill may occur and checks downstream capacity.

Parameters:

Name Type Description Default
vqip dict

A VQIP that can be used to limit the volume in the return value (only volume key is used). Defaults to None.

None

Returns:

Name Type Description
excess dict

A VQIP amount of water that cannot be received

Source code in wsimod\nodes\storage.py
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
def push_check_river_reservoir(self, vqip=None):
    """A push check to receive water, assumes spill may occur and checks downstream
    capacity.

    Args:
        vqip (dict, optional): A VQIP that can be used to limit the volume in
            the return value (only volume key is used). Defaults to None.

    Returns:
        excess (dict): A VQIP amount of water that cannot be received
    """
    # Check downstream capacity (i.e., that would be spilled)
    downstream_availability = self.get_connected(
        direction="push", of_type=["Node", "River", "Waste"]
    )["avail"]
    # Check excess capacity in the reservoir
    excess = self.tank.get_excess()
    # Combine excess and downstream in response
    new_v = excess["volume"] + downstream_availability
    if vqip is not None:
        new_v = min(vqip["volume"], new_v)
    # Update to vqip
    excess = self.v_change_vqip(excess, new_v)

    return excess

push_set_river_reservoir(vqip)

Receive water.

Parameters:

Name Type Description Default
vqip dict

A VQIP amount to be received

required

Returns:

Name Type Description
reply dict

A VQIP amount that was not successfully received

Source code in wsimod\nodes\storage.py
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
def push_set_river_reservoir(self, vqip):
    """Receive water.

    Args:
        vqip (dict): A VQIP amount to be received

    Returns:
        reply (dict): A VQIP amount that was not successfully received
    """
    # Apply normal reservoir storage We do this under the assumption that spill is
    # mixed in with the reservoir If the reservoir can't spill everything you'll get
    # some weird numbers in reply, but if your reservoir can't spill as much as you
    # like then you should probably be pushing the right amount through
    # push_check_river_reservoir Some cunning could probably avoid this by checking
    # vqip, but this is a serious edge case
    _ = self.tank.push_storage(vqip, force=True)
    spill = self.tank.pull_ponded()

    # Send spill downstream
    reply = self.push_distributed(spill, of_type=["Node", "River", "Waste"])

    # Use spill to satisfy downstream flow
    self.total_environmental_satisfied += spill["volume"] - reply["volume"]

    return reply

satisfy_environmental()

Satisfy environmental flow downstream.

Source code in wsimod\nodes\storage.py
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
def satisfy_environmental(self):
    """Satisfy environmental flow downstream."""
    # Calculate how much environmental flow is yet to satisfy #(some may have been
    # already if pull-and-take abstractions have taken place)
    to_satisfy = max(
        self.environmental_flow - self.total_environmental_satisfied, 0
    )
    # Pull from tank
    environmental = self.tank.pull_storage({"volume": to_satisfy})
    # Send downstream
    reply = self.push_distributed(environmental)
    _ = self.tank.push_storage(reply, force=True)
    if reply["volume"] > constants.FLOAT_ACCURACY:
        print("warning: environmental not able to push")

    # Update satisfaction
    self.total_environmental_satisfied += environmental["volume"]

Storage

Bases: Node

Source code in wsimod\nodes\storage.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class Storage(Node):
    """"""

    def __init__(
        self,
        name,
        capacity=0,
        area=0,
        datum=0,
        decays=None,
        initial_storage=0,
        **kwargs,
    ):
        """A Node wrapper for a Tank or DecayTank.

        Args:
            name (str): node name capacity (float, optional): Tank capacity (see
            nodes.py/Tank). Defaults to 0. area (float, optional): Tank area (see
            nodes.py/Tank). Defaults to 0. datum (float, optional): Tank datum (see
            nodes.py/Tank). Defaults to 0. decays (dict, optional): Tank decays if
            needed, (see nodes.py/DecayTank). Defaults to None. initial_storage (float
            or dict, optional): Initial storage (see nodes.py/Tank). Defaults to 0.

        Functions intended to call in orchestration:
            distribute (optional, depends on subclass)
        """
        # Set parameters
        self.initial_storage = initial_storage
        self.capacity = capacity
        self.area = area
        self.datum = datum
        self.decays = decays
        super().__init__(name, **kwargs)

        # Create tank
        if "initial_storage" not in dir(self):
            self.initial_storage = self.empty_vqip()

        if self.decays is None:
            self.tank = Tank(
                capacity=self.capacity,
                area=self.area,
                datum=self.datum,
                initial_storage=self.initial_storage,
            )
        else:
            self.tank = DecayTank(
                capacity=self.capacity,
                area=self.area,
                datum=self.datum,
                initial_storage=self.initial_storage,
                decays=self.decays,
                parent=self,
            )
        # Update handlers
        self.push_set_handler["default"] = self.push_set_storage
        self.push_check_handler["default"] = self.tank.get_excess
        self.pull_set_handler["default"] = lambda vol: self.tank.pull_storage(vol)
        self.pull_check_handler["default"] = self.tank.get_avail

        # Mass balance
        self.mass_balance_ds.append(lambda: self.tank.ds())

    def apply_overrides(self, overrides=Dict[str, Any]):
        """Override parameters.

        Enables a user to override any of the following parameters:
        capacity, area, datum, decays.

        Args:
            overrides (Dict[str, Any]): Dict describing which parameters should
                be overridden (keys) and new values (values). Defaults to {}.
        """
        # not using pop as these items need to stay
        # in the overrides to be fed into the tank overrides
        if "capacity" in overrides.keys():
            self.capacity = overrides["capacity"]
        if "area" in overrides.keys():
            self.area = overrides["area"]
        if "datum" in overrides.keys():
            self.datum = overrides["datum"]
        if "decays" in overrides.keys():
            if self.decays is None:
                raise ValueError(
                    "Attempting to override decays on a node initialised without decays"
                )
            self.decays.update(overrides["decays"])
        # apply tank overrides
        self.tank.apply_overrides(overrides)
        super().apply_overrides(overrides)

    def push_set_storage(self, vqip):
        """A node wrapper for the tank push_storage.

        Args:
            vqip (dict): A VQIP amount to push to the tank

        Returns:
            reply (dict): A VQIP amount that was not successfully pushed
        """
        # Update tank
        reply = self.tank.push_storage(vqip)

        return reply

    def distribute(self):
        """Optional function that discharges all tank storage with push_distributed."""
        # Distribute any active storage
        storage = self.tank.pull_storage(self.tank.get_avail())
        retained = self.push_distributed(storage)
        _ = self.tank.push_storage(retained, force=True)
        if retained["volume"] > constants.FLOAT_ACCURACY:
            print("Storage unable to push")

    def get_percent(self):
        """Function that returns the volume in the storage tank expressed as a percent
        of capacity."""
        return self.tank.storage["volume"] / self.tank.capacity

    def end_timestep(self):
        """Update tank states."""
        self.tank.end_timestep()

    def reinit(self):
        """Call tank reinit."""
        # TODO Automate this better
        self.tank.reinit()
        self.tank.storage["volume"] = self.initial_storage
        self.tank.storage_["volume"] = self.initial_storage

__init__(name, capacity=0, area=0, datum=0, decays=None, initial_storage=0, **kwargs)

A Node wrapper for a Tank or DecayTank.

Parameters:

Name Type Description Default
name str

node name capacity (float, optional): Tank capacity (see

required
nodes.py/Tank). Defaults to 0. area (float

Tank area (see

required
nodes.py/Tank). Defaults to 0. datum (float

Tank datum (see

required
nodes.py/Tank). Defaults to 0. decays (dict

Tank decays if

required
or dict

Initial storage (see nodes.py/Tank). Defaults to 0.

required
Functions intended to call in orchestration

distribute (optional, depends on subclass)

Source code in wsimod\nodes\storage.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def __init__(
    self,
    name,
    capacity=0,
    area=0,
    datum=0,
    decays=None,
    initial_storage=0,
    **kwargs,
):
    """A Node wrapper for a Tank or DecayTank.

    Args:
        name (str): node name capacity (float, optional): Tank capacity (see
        nodes.py/Tank). Defaults to 0. area (float, optional): Tank area (see
        nodes.py/Tank). Defaults to 0. datum (float, optional): Tank datum (see
        nodes.py/Tank). Defaults to 0. decays (dict, optional): Tank decays if
        needed, (see nodes.py/DecayTank). Defaults to None. initial_storage (float
        or dict, optional): Initial storage (see nodes.py/Tank). Defaults to 0.

    Functions intended to call in orchestration:
        distribute (optional, depends on subclass)
    """
    # Set parameters
    self.initial_storage = initial_storage
    self.capacity = capacity
    self.area = area
    self.datum = datum
    self.decays = decays
    super().__init__(name, **kwargs)

    # Create tank
    if "initial_storage" not in dir(self):
        self.initial_storage = self.empty_vqip()

    if self.decays is None:
        self.tank = Tank(
            capacity=self.capacity,
            area=self.area,
            datum=self.datum,
            initial_storage=self.initial_storage,
        )
    else:
        self.tank = DecayTank(
            capacity=self.capacity,
            area=self.area,
            datum=self.datum,
            initial_storage=self.initial_storage,
            decays=self.decays,
            parent=self,
        )
    # Update handlers
    self.push_set_handler["default"] = self.push_set_storage
    self.push_check_handler["default"] = self.tank.get_excess
    self.pull_set_handler["default"] = lambda vol: self.tank.pull_storage(vol)
    self.pull_check_handler["default"] = self.tank.get_avail

    # Mass balance
    self.mass_balance_ds.append(lambda: self.tank.ds())

apply_overrides(overrides=Dict[str, Any])

Override parameters.

Enables a user to override any of the following parameters: capacity, area, datum, decays.

Parameters:

Name Type Description Default
overrides Dict[str, Any]

Dict describing which parameters should be overridden (keys) and new values (values). Defaults to {}.

Dict[str, Any]
Source code in wsimod\nodes\storage.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
def apply_overrides(self, overrides=Dict[str, Any]):
    """Override parameters.

    Enables a user to override any of the following parameters:
    capacity, area, datum, decays.

    Args:
        overrides (Dict[str, Any]): Dict describing which parameters should
            be overridden (keys) and new values (values). Defaults to {}.
    """
    # not using pop as these items need to stay
    # in the overrides to be fed into the tank overrides
    if "capacity" in overrides.keys():
        self.capacity = overrides["capacity"]
    if "area" in overrides.keys():
        self.area = overrides["area"]
    if "datum" in overrides.keys():
        self.datum = overrides["datum"]
    if "decays" in overrides.keys():
        if self.decays is None:
            raise ValueError(
                "Attempting to override decays on a node initialised without decays"
            )
        self.decays.update(overrides["decays"])
    # apply tank overrides
    self.tank.apply_overrides(overrides)
    super().apply_overrides(overrides)

distribute()

Optional function that discharges all tank storage with push_distributed.

Source code in wsimod\nodes\storage.py
120
121
122
123
124
125
126
127
def distribute(self):
    """Optional function that discharges all tank storage with push_distributed."""
    # Distribute any active storage
    storage = self.tank.pull_storage(self.tank.get_avail())
    retained = self.push_distributed(storage)
    _ = self.tank.push_storage(retained, force=True)
    if retained["volume"] > constants.FLOAT_ACCURACY:
        print("Storage unable to push")

end_timestep()

Update tank states.

Source code in wsimod\nodes\storage.py
134
135
136
def end_timestep(self):
    """Update tank states."""
    self.tank.end_timestep()

get_percent()

Function that returns the volume in the storage tank expressed as a percent of capacity.

Source code in wsimod\nodes\storage.py
129
130
131
132
def get_percent(self):
    """Function that returns the volume in the storage tank expressed as a percent
    of capacity."""
    return self.tank.storage["volume"] / self.tank.capacity

push_set_storage(vqip)

A node wrapper for the tank push_storage.

Parameters:

Name Type Description Default
vqip dict

A VQIP amount to push to the tank

required

Returns:

Name Type Description
reply dict

A VQIP amount that was not successfully pushed

Source code in wsimod\nodes\storage.py
106
107
108
109
110
111
112
113
114
115
116
117
118
def push_set_storage(self, vqip):
    """A node wrapper for the tank push_storage.

    Args:
        vqip (dict): A VQIP amount to push to the tank

    Returns:
        reply (dict): A VQIP amount that was not successfully pushed
    """
    # Update tank
    reply = self.tank.push_storage(vqip)

    return reply

reinit()

Call tank reinit.

Source code in wsimod\nodes\storage.py
138
139
140
141
142
143
def reinit(self):
    """Call tank reinit."""
    # TODO Automate this better
    self.tank.reinit()
    self.tank.storage["volume"] = self.initial_storage
    self.tank.storage_["volume"] = self.initial_storage