Skip to content

API Reference - Model

This section of the documentation provides a reference for the API of the orchestration.model module

Created on Mon Jul 4 16:01:48 2022.

@author: bdobson

Model

Bases: WSIObj

Source code in wsimod\orchestration\model.py
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
class Model(WSIObj):
    """"""

    def __init__(self):
        """Object to contain nodes and arcs that provides a default orchestration.

        Returns:
            Model: An empty model object
        """
        super().__init__()
        self.arcs = {}
        # self.arcs_type = {} #not sure that this would be necessary
        self.nodes = {}
        self.nodes_type = {}
        self.extensions = []
        self.river_discharge_order = []

        # Default orchestration
        self.orchestration = [
            {"FWTW": "treat_water"},
            {"Demand": "create_demand"},
            {"Land": "run"},
            {"Groundwater": "infiltrate"},
            {"Sewer": "make_discharge"},
            {"Foul": "make_discharge"},
            {"WWTW": "calculate_discharge"},
            {"Groundwater": "distribute"},
            {"River": "calculate_discharge"},
            {"Reservoir": "make_abstractions"},
            {"Land": "apply_irrigation"},
            {"WWTW": "make_discharge"},
            {"Catchment": "route"},
        ]

    def get_init_args(self, cls):
        """Get the arguments of the __init__ method for a class and its superclasses."""
        init_args = []
        for c in cls.__mro__:
            # Get the arguments of the __init__ method
            args = inspect.getfullargspec(c.__init__).args[1:]
            init_args.extend(args)
        return init_args

    def load(self, address, config_name="config.yml", overrides={}):
        """

        Args:
            address:
            config_name:
            overrides:
        """
        from ..extensions import apply_patches

        with open(os.path.join(address, config_name), "r") as file:
            data: dict = yaml.safe_load(file)

        for key, item in overrides.items():
            data[key] = item

        constants.POLLUTANTS = data.get("pollutants", constants.POLLUTANTS)
        constants.ADDITIVE_POLLUTANTS = data.get(
            "additive_pollutants", constants.ADDITIVE_POLLUTANTS
        )
        constants.NON_ADDITIVE_POLLUTANTS = data.get(
            "non_additive_pollutants", constants.NON_ADDITIVE_POLLUTANTS
        )
        constants.FLOAT_ACCURACY = float(
            data.get("float_accuracy", constants.FLOAT_ACCURACY)
        )
        self.__dict__.update(Model().__dict__)

        """
        FLAG:
            E.G. ADDITION FOR NEW ORCHESTRATION
        """
        load_extension_files(data.get("extensions", []))
        self.extensions = data.get("extensions", [])

        if "orchestration" in data.keys():
            # Update orchestration
            self.orchestration = data["orchestration"]

        if "nodes" not in data.keys():
            raise ValueError("No nodes found in the config")

        nodes = data["nodes"]

        for name, node in nodes.items():
            if "filename" in node.keys():
                node["data_input_dict"] = read_csv(
                    os.path.join(address, node["filename"])
                )
                del node["filename"]
            if "surfaces" in node.keys():
                for key, surface in node["surfaces"].items():
                    if "filename" in surface.keys():
                        node["surfaces"][key]["data_input_dict"] = read_csv(
                            os.path.join(address, surface["filename"])
                        )
                        del surface["filename"]
                node["surfaces"] = list(node["surfaces"].values())
        arcs = data.get("arcs", {})
        self.add_nodes(list(nodes.values()))
        self.add_arcs(list(arcs.values()))

        self.add_overrides(data.get("overrides", {}))

        if "dates" in data.keys():
            self.dates = [to_datetime(x) for x in data["dates"]]

        apply_patches(self)

    def save(self, address, config_name="config.yml", compress=False):
        """Save the model object to a yaml file and input data to csv.gz format in the
        directory specified.

        Args:
            address (str): Path to a directory
            config_name (str, optional): Name of yaml model file.
                Defaults to 'model.yml'
        """
        if not os.path.exists(address):
            os.mkdir(address)
        nodes = {}

        if compress:
            file_type = "csv.gz"
        else:
            file_type = "csv"
        for node in self.nodes.values():
            init_args = self.get_init_args(node.__class__)
            special_args = set(["surfaces", "parent", "data_input_dict"])

            node_props = {
                x: getattr(node, x) for x in set(init_args).difference(special_args)
            }
            node_props["type_"] = node.__class__.__name__
            node_props["node_type_override"] = (
                repr(node.__class__).split(".")[-1].replace("'>", "")
            )

            if "surfaces" in init_args:
                surfaces = {}
                for surface in node.surfaces:
                    surface_args = self.get_init_args(surface.__class__)
                    surface_props = {
                        x: getattr(surface, x)
                        for x in set(surface_args).difference(special_args)
                    }
                    surface_props["type_"] = surface.__class__.__name__

                    # Exceptions...
                    # TODO I need a better way to do this
                    del surface_props["capacity"]
                    if set(["rooting_depth", "pore_depth"]).intersection(surface_args):
                        del surface_props["depth"]
                    if "data_input_dict" in surface_args:
                        if surface.data_input_dict:
                            filename = (
                                "{0}-{1}-inputs.{2}".format(
                                    node.name, surface.surface, file_type
                                )
                                .replace("(", "_")
                                .replace(")", "_")
                                .replace("/", "_")
                                .replace(" ", "_")
                            )
                            write_csv(
                                surface.data_input_dict,
                                {"node": node.name, "surface": surface.surface},
                                os.path.join(address, filename),
                                compress=compress,
                            )
                            surface_props["filename"] = filename
                    surfaces[surface_props["surface"]] = surface_props
                node_props["surfaces"] = surfaces

            if "data_input_dict" in init_args:
                if node.data_input_dict:
                    filename = "{0}-inputs.{1}".format(node.name, file_type)
                    write_csv(
                        node.data_input_dict,
                        {"node": node.name},
                        os.path.join(address, filename),
                        compress=compress,
                    )
                    node_props["filename"] = filename

            nodes[node.name] = node_props

        arcs = {}
        for arc in self.arcs.values():
            init_args = self.get_init_args(arc.__class__)
            special_args = set(["in_port", "out_port"])
            arc_props = {
                x: getattr(arc, x) for x in set(init_args).difference(special_args)
            }
            arc_props["type_"] = arc.__class__.__name__
            arc_props["in_port"] = arc.in_port.name
            arc_props["out_port"] = arc.out_port.name
            arcs[arc.name] = arc_props

        data = {
            "nodes": nodes,
            "arcs": arcs,
            "orchestration": self.orchestration,
            "pollutants": constants.POLLUTANTS,
            "additive_pollutants": constants.ADDITIVE_POLLUTANTS,
            "non_additive_pollutants": constants.NON_ADDITIVE_POLLUTANTS,
            "float_accuracy": constants.FLOAT_ACCURACY,
            "extensions": self.extensions,
            "river_discharge_order": self.river_discharge_order,
        }
        if hasattr(self, "dates"):
            data["dates"] = [str(x) for x in self.dates]

        def coerce_value(value):
            """

            Args:
                value:

            Returns:

            """
            conversion_options = {
                "__float__": float,
                "__iter__": list,
                "__int__": int,
                "__str__": str,
                "__bool__": bool,
            }
            converted = False
            for property, func in conversion_options.items():
                if hasattr(value, property):
                    try:
                        yaml.safe_dump(func(value))
                        value = func(value)
                        converted = True
                        break
                    except Exception:
                        raise ValueError(f"Cannot dump: {value} of type {type(value)}")
            if not converted:
                raise ValueError(f"Cannot dump: {value} of type {type(value)}")

            return value

        def check_and_coerce_dict(data_dict):
            """

            Args:
                data_dict:
            """
            for key, value in data_dict.items():
                if isinstance(value, dict):
                    check_and_coerce_dict(value)
                else:
                    try:
                        yaml.safe_dump(value)
                    except yaml.representer.RepresenterError:
                        if hasattr(value, "__iter__"):
                            for idx, val in enumerate(value):
                                if isinstance(val, dict):
                                    check_and_coerce_dict(val)
                                else:
                                    value[idx] = coerce_value(val)
                        data_dict[key] = coerce_value(value)

        check_and_coerce_dict(data)

        write_yaml(address, config_name, data)

    def load_pickle(self, fid):
        """Load model object to a pickle file, including the model states.

        Args:
            fid (str): File address to load the pickled model from

        Returns:
            model (obj): loaded model

        Example:
            >>> # Load and run your model
            >>> my_model.load(model_dir,config_name = 'config.yml')
            >>> _ = my_model.run()
            >>>
            >>> # Save it including its different states
            >>> my_model.save_pickle('model_at_end_of_run.pkl')
            >>>
            >>> # Load it at another time to resume the model from the end
            >>> # of the previous run
            >>> new_model = Model()
            >>> new_model = new_model.load_pickle('model_at_end_of_run.pkl')
        """
        file = open(fid, "rb")
        return pickle.load(file)

    def save_pickle(self, fid):
        """Save model object to a pickle file, including saving the model states.

        Args:
            fid (str): File address to save the pickled model to

        Returns:
            message (str): Exit message of pickle dump
        """
        file = open(fid, "wb")
        pickle.dump(self, file)
        return file.close()

    def add_nodes(self, nodelist):
        """Add nodes to the model object from a list of dicts, where each dict contains
        all of the parameters for a node. Intended to be called before add_arcs.

        Args:
            nodelist (list): List of dicts, where a dict is a node
        """

        for data in nodelist:
            name = data["name"]
            type_ = data["type_"]
            if "node_type_override" in data.keys():
                node_type = data["node_type_override"]
                del data["node_type_override"]
            else:
                node_type = type_
            if "foul" in name:
                # Absolute hack to enable foul sewers to be treated separate from storm
                type_ = "Foul"
            if "geometry" in data.keys():
                del data["geometry"]
            del data["type_"]

            if node_type not in NODES_REGISTRY.keys():
                raise ValueError(f"Node type {node_type} not recognised")

            if type_ not in self.nodes_type.keys():
                self.nodes_type[type_] = {}

            self.nodes_type[type_][name] = NODES_REGISTRY[node_type](**dict(data))
            self.nodes[name] = self.nodes_type[type_][name]
            self.nodelist = [x for x in self.nodes.values()]

    def add_instantiated_nodes(self, nodelist):
        """Add nodes to the model object from a list of objects, where each object is an
        already instantiated node object. Intended to be called before add_arcs.

        Args:
            nodelist (list): list of objects that are nodes
        """
        self.nodelist = nodelist
        self.nodes = {x.name: x for x in nodelist}
        for x in nodelist:
            type_ = x.__class__.__name__
            if type_ not in self.nodes_type.keys():
                self.nodes_type[type_] = {}
            self.nodes_type[type_][x.name] = x

    def add_arcs(self, arclist):
        """Add nodes to the model object from a list of dicts, where each dict contains
        all of the parameters for an arc.

        Args:
            arclist (list): list of dicts, where a dict is an arc
        """
        river_arcs = {}
        for arc in arclist:
            name = arc["name"]
            type_ = arc["type_"]
            del arc["type_"]
            arc["in_port"] = self.nodes[arc["in_port"]]
            arc["out_port"] = self.nodes[arc["out_port"]]
            self.arcs[name] = getattr(arcs_mod, type_)(**dict(arc))

            if arc["in_port"].__class__.__name__ in [
                "River",
                "Node",
                "Waste",
                "Reservoir",
            ]:
                if arc["out_port"].__class__.__name__ in [
                    "River",
                    "Node",
                    "Waste",
                    "Reservoir",
                ]:
                    river_arcs[name] = self.arcs[name]

        self.river_discharge_order = []
        if not any(river_arcs):
            return
        upstreamness = (
            {x: 0 for x in self.nodes_type["Waste"].keys()}
            if "Waste" in self.nodes_type
            else {}
        )
        upstreamness = self.assign_upstream(river_arcs, upstreamness)

        if "River" in self.nodes_type:
            for node in sorted(
                upstreamness.items(), key=lambda item: item[1], reverse=True
            ):
                if node[0] in self.nodes_type["River"]:
                    self.river_discharge_order.append(node[0])

    def add_instantiated_arcs(self, arclist):
        """Add arcs to the model object from a list of objects, where each object is an
        already instantiated arc object.

        Args:
            arclist (list): list of objects that are arcs.
        """
        self.arclist = arclist
        self.arcs = {x.name: x for x in arclist}
        river_arcs = {}
        for arc in arclist:
            if arc.in_port.__class__.__name__ in [
                "River",
                "Node",
                "Waste",
                "Reservoir",
            ]:
                if arc.out_port.__class__.__name__ in [
                    "River",
                    "Node",
                    "Waste",
                    "Reservoir",
                ]:
                    river_arcs[arc.name] = arc
        if not any(river_arcs):
            return
        upstreamness = (
            {x: 0 for x in self.nodes_type["Waste"].keys()}
            if "Waste" in self.nodes_type
            else {}
        )
        upstreamness = {x: 0 for x in self.nodes_type["Waste"].keys()}

        upstreamness = self.assign_upstream(river_arcs, upstreamness)

        self.river_discharge_order = []
        if "River" in self.nodes_type:
            for node in sorted(
                upstreamness.items(), key=lambda item: item[1], reverse=True
            ):
                if node[0] in self.nodes_type["River"]:
                    self.river_discharge_order.append(node[0])

    def assign_upstream(self, arcs, upstreamness):
        """Recursive function to trace upstream up arcs to determine which are the most
        upstream.

        Args:
            arcs (list): list of dicts where dicts are arcs
            upstreamness (dict): dictionary contain nodes in
                arcs as keys and a number representing upstreamness
                (higher numbers = more upstream)

        Returns:
            upstreamness (dict): final version of upstreamness
        """
        upstreamness_ = upstreamness.copy()
        in_nodes = [
            x.in_port.name
            for x in arcs.values()
            if x.out_port.name in upstreamness.keys()
        ]
        ind = max(list(upstreamness_.values())) + 1
        in_nodes = list(set(in_nodes).difference(upstreamness.keys()))
        for node in in_nodes:
            upstreamness[node] = ind
        if upstreamness == upstreamness_:
            return upstreamness
        else:
            upstreamness = self.assign_upstream(arcs, upstreamness)
            return upstreamness

    def add_overrides(self, config: dict):
        """Apply overrides to nodes and arcs in the model object.

        Args:
            config (dict): dictionary of overrides to apply to the model object.
        """
        for node in config.get("nodes", {}).values():
            type_ = node.pop("type_")
            name = node.pop("name")

            if type_ not in self.nodes_type.keys():
                raise ValueError(f"Node type {type_} not recognised")

            if name not in self.nodes_type[type_].keys():
                raise ValueError(f"Node {name} not recognised")

            self.nodes_type[type_][name].apply_overrides(node)

        for arc in config.get("arcs", {}).values():
            name = arc.pop("name")
            type_ = arc.pop("type_")

            if name not in self.arcs.keys():
                raise ValueError(f"Arc {name} not recognised")

            self.arcs[name].apply_overrides(arc)

    def debug_node_mb(self):
        """Simple function that iterates over nodes calling their mass balance
        function."""
        for node in self.nodelist:
            _ = node.node_mass_balance()

    def default_settings(self):
        """Incomplete function that enables easy specification of results storage.

        Returns:
            (dict): default settings
        """
        return {
            "arcs": {"flows": True, "pollutants": True},
            "tanks": {"storages": True, "pollutants": True},
            "mass_balance": False,
        }

    def change_runoff_coefficient(self, relative_change, nodes=None):
        """Clunky way to change the runoff coefficient of a land node.

        Args:
            relative_change (float): amount that the impervious area in the land
                node is multiplied by (grass area is changed in compensation)
            nodes (list, optional): list of land nodes to change the parameters of.
                Defaults to None, which applies the change to all land nodes.
        """
        # Multiplies impervious area by relative change and adjusts grassland
        # accordingly
        if nodes is None:
            nodes = self.nodes_type["Land"].values()

        if isinstance(relative_change, float):
            relative_change = {x: relative_change for x in nodes}

        for node in nodes:
            surface_dict = {x.surface: x for x in node.surfaces}
            if "Impervious" in surface_dict.keys():
                impervious_area = surface_dict["Impervious"].area
                grass_area = surface_dict["Grass"].area

                new_impervious_area = impervious_area * relative_change[node]
                new_grass_area = grass_area + (impervious_area - new_impervious_area)
                if new_grass_area < 0:
                    print("not enough grass")
                    break
                surface_dict["Impervious"].area = new_impervious_area
                surface_dict["Impervious"].capacity *= relative_change[node]

                surface_dict["Grass"].area = new_grass_area
                surface_dict["Grass"].capacity *= new_grass_area / grass_area
                for pol in constants.ADDITIVE_POLLUTANTS + ["volume"]:
                    surface_dict["Grass"].storage[pol] *= new_grass_area / grass_area
                for pool in surface_dict["Grass"].nutrient_pool.pools:
                    for nutrient in pool.storage.keys():
                        pool.storage[nutrient] *= new_grass_area / grass_area

    def run(
        self,
        dates=None,
        settings=None,
        record_arcs=None,
        record_tanks=None,
        record_surfaces=None,
        verbose=True,
        record_all=True,
        objectives=[],
    ):
        """Run the model object with the default orchestration.

        Args:
            dates (list, optional): Dates to simulate. Defaults to None, which
                simulates all dates that the model has data for.
            settings (dict, optional): Dict to specify what results are stored,
                not currently used. Defaults to None.
            record_arcs (list, optional): List of arcs to store result for.
                Defaults to None.
            record_tanks (list, optional): List of nodes with water stores to
                store results for. Defaults to None.
            record_surfaces (list, optional): List of tuples of
                (land node, surface) to store results for. Defaults to None.
            verbose (bool, optional): Prints updates on simulation if true.
                Defaults to True.
            record_all (bool, optional): Specifies to store all results.
                Defaults to True.
            objectives (list, optional): A list of dicts with objectives to
                calculate (see examples). Defaults to [].

        Returns:
            flows: simulated flows in a list of dicts
            tanks: simulated tanks storages in a list of dicts
            objective_results: list of values based on objectives list
            surfaces: simulated surface storages of land nodes in a list of dicts

        Examples:
            # Run a model without storing any results but calculating objectives
            import statistics as stats
            objectives = [{'element_type' : 'flows',
                           'name' : 'my_river',
                           'function' : @ (x, _) stats.mean([y['phosphate'] for y in x])
                           },
                          {'element_type' : 'tanks',
                           'name' : 'my_reservoir',
                           'function' : @ (x, model) sum([y['storage'] < (model.nodes
                           ['my_reservoir'].tank.capacity / 2) for y in x])
                           }]
            _, _, results, _ = my_model.run(record_all = False, objectives = objectives)
        """
        if record_arcs is None:
            record_arcs = []
            if record_all:
                record_arcs = list(self.arcs.keys())
        if record_tanks is None:
            record_tanks = []

        if record_surfaces is None:
            record_surfaces = []

        if settings is None:
            settings = self.default_settings()

        def blockPrint():
            """

            Returns:

            """
            stdout = sys.stdout
            sys.stdout = open(os.devnull, "w")
            return stdout

        def enablePrint(stdout):
            """

            Args:
                stdout:
            """
            sys.stdout = stdout

        if not verbose:
            stdout = blockPrint()
        if dates is None:
            dates = self.dates

        for objective in objectives:
            if objective["element_type"] == "tanks":
                record_tanks.append(objective["name"])
            elif objective["element_type"] == "flows":
                record_arcs.append(objective["name"])
            elif objective["element_type"] == "surfaces":
                record_surfaces.append((objective["name"], objective["surface"]))
            else:
                print("element_type not recorded")

        flows = []
        tanks = []
        surfaces = []
        for date in tqdm(dates, disable=(not verbose)):
            # for date in dates:
            for node in self.nodelist:
                node.t = date
                node.monthyear = date.to_period("M")

            # Iterate over orchestration
            for timestep_item in self.orchestration:
                for node_type, function in timestep_item.items():
                    for node in self.nodes_type.get(node_type, {}).values():
                        getattr(node, function)()

            # river
            for node_name in self.river_discharge_order:
                self.nodes[node_name].distribute()

            # mass balance checking
            # nodes/system
            sys_in = self.empty_vqip()
            sys_out = self.empty_vqip()
            sys_ds = self.empty_vqip()

            # arcs
            for arc in self.arcs.values():
                in_, ds_, out_ = arc.arc_mass_balance()
                for v in constants.ADDITIVE_POLLUTANTS + ["volume"]:
                    sys_in[v] += in_[v]
                    sys_out[v] += out_[v]
                    sys_ds[v] += ds_[v]
            for node in self.nodelist:
                # print(node.name)
                in_, ds_, out_ = node.node_mass_balance()

                # temp = {'name' : node.name,
                #         'time' : date}
                # for lab, dict_ in zip(['in','ds','out'], [in_, ds_, out_]):
                #     for key, value in dict_.items():
                #         temp[(lab, key)] = value
                # node_mb.append(temp)

                for v in constants.ADDITIVE_POLLUTANTS + ["volume"]:
                    sys_in[v] += in_[v]
                    sys_out[v] += out_[v]
                    sys_ds[v] += ds_[v]

            for v in constants.ADDITIVE_POLLUTANTS + ["volume"]:
                # Find the largest value of in_, out_, ds_
                largest = max(sys_in[v], sys_in[v], sys_in[v])

                if largest > constants.FLOAT_ACCURACY:
                    # Convert perform comparison in a magnitude to match the largest
                    # value
                    magnitude = 10 ** int(log10(largest))
                    in_10 = sys_in[v] / magnitude
                    out_10 = sys_in[v] / magnitude
                    ds_10 = sys_in[v] / magnitude
                else:
                    in_10 = sys_in[v]
                    ds_10 = sys_in[v]
                    out_10 = sys_in[v]

                if (in_10 - ds_10 - out_10) > constants.FLOAT_ACCURACY:
                    print(
                        "system mass balance error for "
                        + v
                        + " of "
                        + str(sys_in[v] - sys_ds[v] - sys_out[v])
                    )

            # Store results
            for arc in record_arcs:
                arc = self.arcs[arc]
                flows.append(
                    {"arc": arc.name, "flow": arc.vqip_out["volume"], "time": date}
                )
                for pol in constants.POLLUTANTS:
                    flows[-1][pol] = arc.vqip_out[pol]

            for node in record_tanks:
                node = self.nodes[node]
                tanks.append(
                    {
                        "node": node.name,
                        "storage": node.tank.storage["volume"],
                        "time": date,
                    }
                )

            for node, surface in record_surfaces:
                node = self.nodes[node]
                name = node.name
                surface = node.get_surface(surface)
                if not isinstance(surface, ImperviousSurface):
                    surfaces.append(
                        {
                            "node": name,
                            "surface": surface.surface,
                            "percolation": surface.percolation["volume"],
                            "subsurface_r": surface.subsurface_flow["volume"],
                            "surface_r": surface.infiltration_excess["volume"],
                            "storage": surface.storage["volume"],
                            "evaporation": surface.evaporation["volume"],
                            "precipitation": surface.precipitation["volume"],
                            "tank_recharge": surface.tank_recharge,
                            "capacity": surface.capacity,
                            "time": date,
                            "et0_coef": surface.et0_coefficient,
                            # 'crop_factor' : surface.crop_factor
                        }
                    )
                    for pol in constants.POLLUTANTS:
                        surfaces[-1][pol] = surface.storage[pol]
                else:
                    surfaces.append(
                        {
                            "node": name,
                            "surface": surface.surface,
                            "storage": surface.storage["volume"],
                            "evaporation": surface.evaporation["volume"],
                            "precipitation": surface.precipitation["volume"],
                            "capacity": surface.capacity,
                            "time": date,
                        }
                    )
                    for pol in constants.POLLUTANTS:
                        surfaces[-1][pol] = surface.storage[pol]
            if record_all:
                for node in self.nodes.values():
                    for prop_ in dir(node):
                        prop = node.__getattribute__(prop_)
                        if prop.__class__ in [QueueTank, Tank, ResidenceTank]:
                            tanks.append(
                                {
                                    "node": node.name,
                                    "time": date,
                                    "storage": prop.storage["volume"],
                                    "prop": prop_,
                                }
                            )
                            for pol in constants.POLLUTANTS:
                                tanks[-1][pol] = prop.storage[pol]

                for name, node in self.nodes_type.get("Land", {}).items():
                    for surface in node.surfaces:
                        if not isinstance(surface, ImperviousSurface):
                            surfaces.append(
                                {
                                    "node": name,
                                    "surface": surface.surface,
                                    "percolation": surface.percolation["volume"],
                                    "subsurface_r": surface.subsurface_flow["volume"],
                                    "surface_r": surface.infiltration_excess["volume"],
                                    "storage": surface.storage["volume"],
                                    "evaporation": surface.evaporation["volume"],
                                    "precipitation": surface.precipitation["volume"],
                                    "tank_recharge": surface.tank_recharge,
                                    "capacity": surface.capacity,
                                    "time": date,
                                    "et0_coef": surface.et0_coefficient,
                                    # 'crop_factor' : surface.crop_factor
                                }
                            )
                            for pol in constants.POLLUTANTS:
                                surfaces[-1][pol] = surface.storage[pol]
                        else:
                            surfaces.append(
                                {
                                    "node": name,
                                    "surface": surface.surface,
                                    "storage": surface.storage["volume"],
                                    "evaporation": surface.evaporation["volume"],
                                    "precipitation": surface.precipitation["volume"],
                                    "capacity": surface.capacity,
                                    "time": date,
                                }
                            )
                            for pol in constants.POLLUTANTS:
                                surfaces[-1][pol] = surface.storage[pol]

            for node in self.nodes.values():
                node.end_timestep()

            for arc in self.arcs.values():
                arc.end_timestep()
        objective_results = []
        for objective in objectives:
            if objective["element_type"] == "tanks":
                val = objective["function"](
                    [x for x in tanks if x["node"] == objective["name"]], self
                )
            elif objective["element_type"] == "flows":
                val = objective["function"](
                    [x for x in flows if x["arc"] == objective["name"]], self
                )
            elif objective["element_type"] == "surfaces":
                val = objective["function"](
                    [
                        x
                        for x in surfaces
                        if (x["node"] == objective["name"])
                        & (x["surface"] == objective["surface"])
                    ],
                    self,
                )
            objective_results.append(val)
        if not verbose:
            enablePrint(stdout)
        return flows, tanks, objective_results, surfaces

    def reinit(self):
        """Reinitialise by ending all node/arc timesteps and calling reinit function in
        all nodes (generally zero-ing their storage values)."""
        for node in self.nodes.values():
            node.end_timestep()
            for prop in dir(node):
                prop = node.__getattribute__(prop)
                for prop_ in dir(prop):
                    if prop_ == "reinit":
                        prop_ = node.__getattribute__(prop_)
                        prop_()

        for arc in self.arcs.values():
            arc.end_timestep()

__init__()

Object to contain nodes and arcs that provides a default orchestration.

Returns:

Name Type Description
Model

An empty model object

Source code in wsimod\orchestration\model.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def __init__(self):
    """Object to contain nodes and arcs that provides a default orchestration.

    Returns:
        Model: An empty model object
    """
    super().__init__()
    self.arcs = {}
    # self.arcs_type = {} #not sure that this would be necessary
    self.nodes = {}
    self.nodes_type = {}
    self.extensions = []
    self.river_discharge_order = []

    # Default orchestration
    self.orchestration = [
        {"FWTW": "treat_water"},
        {"Demand": "create_demand"},
        {"Land": "run"},
        {"Groundwater": "infiltrate"},
        {"Sewer": "make_discharge"},
        {"Foul": "make_discharge"},
        {"WWTW": "calculate_discharge"},
        {"Groundwater": "distribute"},
        {"River": "calculate_discharge"},
        {"Reservoir": "make_abstractions"},
        {"Land": "apply_irrigation"},
        {"WWTW": "make_discharge"},
        {"Catchment": "route"},
    ]

add_arcs(arclist)

Add nodes to the model object from a list of dicts, where each dict contains all of the parameters for an arc.

Parameters:

Name Type Description Default
arclist list

list of dicts, where a dict is an arc

required
Source code in wsimod\orchestration\model.py
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
def add_arcs(self, arclist):
    """Add nodes to the model object from a list of dicts, where each dict contains
    all of the parameters for an arc.

    Args:
        arclist (list): list of dicts, where a dict is an arc
    """
    river_arcs = {}
    for arc in arclist:
        name = arc["name"]
        type_ = arc["type_"]
        del arc["type_"]
        arc["in_port"] = self.nodes[arc["in_port"]]
        arc["out_port"] = self.nodes[arc["out_port"]]
        self.arcs[name] = getattr(arcs_mod, type_)(**dict(arc))

        if arc["in_port"].__class__.__name__ in [
            "River",
            "Node",
            "Waste",
            "Reservoir",
        ]:
            if arc["out_port"].__class__.__name__ in [
                "River",
                "Node",
                "Waste",
                "Reservoir",
            ]:
                river_arcs[name] = self.arcs[name]

    self.river_discharge_order = []
    if not any(river_arcs):
        return
    upstreamness = (
        {x: 0 for x in self.nodes_type["Waste"].keys()}
        if "Waste" in self.nodes_type
        else {}
    )
    upstreamness = self.assign_upstream(river_arcs, upstreamness)

    if "River" in self.nodes_type:
        for node in sorted(
            upstreamness.items(), key=lambda item: item[1], reverse=True
        ):
            if node[0] in self.nodes_type["River"]:
                self.river_discharge_order.append(node[0])

add_instantiated_arcs(arclist)

Add arcs to the model object from a list of objects, where each object is an already instantiated arc object.

Parameters:

Name Type Description Default
arclist list

list of objects that are arcs.

required
Source code in wsimod\orchestration\model.py
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
def add_instantiated_arcs(self, arclist):
    """Add arcs to the model object from a list of objects, where each object is an
    already instantiated arc object.

    Args:
        arclist (list): list of objects that are arcs.
    """
    self.arclist = arclist
    self.arcs = {x.name: x for x in arclist}
    river_arcs = {}
    for arc in arclist:
        if arc.in_port.__class__.__name__ in [
            "River",
            "Node",
            "Waste",
            "Reservoir",
        ]:
            if arc.out_port.__class__.__name__ in [
                "River",
                "Node",
                "Waste",
                "Reservoir",
            ]:
                river_arcs[arc.name] = arc
    if not any(river_arcs):
        return
    upstreamness = (
        {x: 0 for x in self.nodes_type["Waste"].keys()}
        if "Waste" in self.nodes_type
        else {}
    )
    upstreamness = {x: 0 for x in self.nodes_type["Waste"].keys()}

    upstreamness = self.assign_upstream(river_arcs, upstreamness)

    self.river_discharge_order = []
    if "River" in self.nodes_type:
        for node in sorted(
            upstreamness.items(), key=lambda item: item[1], reverse=True
        ):
            if node[0] in self.nodes_type["River"]:
                self.river_discharge_order.append(node[0])

add_instantiated_nodes(nodelist)

Add nodes to the model object from a list of objects, where each object is an already instantiated node object. Intended to be called before add_arcs.

Parameters:

Name Type Description Default
nodelist list

list of objects that are nodes

required
Source code in wsimod\orchestration\model.py
472
473
474
475
476
477
478
479
480
481
482
483
484
485
def add_instantiated_nodes(self, nodelist):
    """Add nodes to the model object from a list of objects, where each object is an
    already instantiated node object. Intended to be called before add_arcs.

    Args:
        nodelist (list): list of objects that are nodes
    """
    self.nodelist = nodelist
    self.nodes = {x.name: x for x in nodelist}
    for x in nodelist:
        type_ = x.__class__.__name__
        if type_ not in self.nodes_type.keys():
            self.nodes_type[type_] = {}
        self.nodes_type[type_][x.name] = x

add_nodes(nodelist)

Add nodes to the model object from a list of dicts, where each dict contains all of the parameters for a node. Intended to be called before add_arcs.

Parameters:

Name Type Description Default
nodelist list

List of dicts, where a dict is a node

required
Source code in wsimod\orchestration\model.py
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
def add_nodes(self, nodelist):
    """Add nodes to the model object from a list of dicts, where each dict contains
    all of the parameters for a node. Intended to be called before add_arcs.

    Args:
        nodelist (list): List of dicts, where a dict is a node
    """

    for data in nodelist:
        name = data["name"]
        type_ = data["type_"]
        if "node_type_override" in data.keys():
            node_type = data["node_type_override"]
            del data["node_type_override"]
        else:
            node_type = type_
        if "foul" in name:
            # Absolute hack to enable foul sewers to be treated separate from storm
            type_ = "Foul"
        if "geometry" in data.keys():
            del data["geometry"]
        del data["type_"]

        if node_type not in NODES_REGISTRY.keys():
            raise ValueError(f"Node type {node_type} not recognised")

        if type_ not in self.nodes_type.keys():
            self.nodes_type[type_] = {}

        self.nodes_type[type_][name] = NODES_REGISTRY[node_type](**dict(data))
        self.nodes[name] = self.nodes_type[type_][name]
        self.nodelist = [x for x in self.nodes.values()]

add_overrides(config)

Apply overrides to nodes and arcs in the model object.

Parameters:

Name Type Description Default
config dict

dictionary of overrides to apply to the model object.

required
Source code in wsimod\orchestration\model.py
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
def add_overrides(self, config: dict):
    """Apply overrides to nodes and arcs in the model object.

    Args:
        config (dict): dictionary of overrides to apply to the model object.
    """
    for node in config.get("nodes", {}).values():
        type_ = node.pop("type_")
        name = node.pop("name")

        if type_ not in self.nodes_type.keys():
            raise ValueError(f"Node type {type_} not recognised")

        if name not in self.nodes_type[type_].keys():
            raise ValueError(f"Node {name} not recognised")

        self.nodes_type[type_][name].apply_overrides(node)

    for arc in config.get("arcs", {}).values():
        name = arc.pop("name")
        type_ = arc.pop("type_")

        if name not in self.arcs.keys():
            raise ValueError(f"Arc {name} not recognised")

        self.arcs[name].apply_overrides(arc)

assign_upstream(arcs, upstreamness)

Recursive function to trace upstream up arcs to determine which are the most upstream.

Parameters:

Name Type Description Default
arcs list

list of dicts where dicts are arcs

required
upstreamness dict

dictionary contain nodes in arcs as keys and a number representing upstreamness (higher numbers = more upstream)

required

Returns:

Name Type Description
upstreamness dict

final version of upstreamness

Source code in wsimod\orchestration\model.py
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
def assign_upstream(self, arcs, upstreamness):
    """Recursive function to trace upstream up arcs to determine which are the most
    upstream.

    Args:
        arcs (list): list of dicts where dicts are arcs
        upstreamness (dict): dictionary contain nodes in
            arcs as keys and a number representing upstreamness
            (higher numbers = more upstream)

    Returns:
        upstreamness (dict): final version of upstreamness
    """
    upstreamness_ = upstreamness.copy()
    in_nodes = [
        x.in_port.name
        for x in arcs.values()
        if x.out_port.name in upstreamness.keys()
    ]
    ind = max(list(upstreamness_.values())) + 1
    in_nodes = list(set(in_nodes).difference(upstreamness.keys()))
    for node in in_nodes:
        upstreamness[node] = ind
    if upstreamness == upstreamness_:
        return upstreamness
    else:
        upstreamness = self.assign_upstream(arcs, upstreamness)
        return upstreamness

change_runoff_coefficient(relative_change, nodes=None)

Clunky way to change the runoff coefficient of a land node.

Parameters:

Name Type Description Default
relative_change float

amount that the impervious area in the land node is multiplied by (grass area is changed in compensation)

required
nodes list

list of land nodes to change the parameters of. Defaults to None, which applies the change to all land nodes.

None
Source code in wsimod\orchestration\model.py
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
def change_runoff_coefficient(self, relative_change, nodes=None):
    """Clunky way to change the runoff coefficient of a land node.

    Args:
        relative_change (float): amount that the impervious area in the land
            node is multiplied by (grass area is changed in compensation)
        nodes (list, optional): list of land nodes to change the parameters of.
            Defaults to None, which applies the change to all land nodes.
    """
    # Multiplies impervious area by relative change and adjusts grassland
    # accordingly
    if nodes is None:
        nodes = self.nodes_type["Land"].values()

    if isinstance(relative_change, float):
        relative_change = {x: relative_change for x in nodes}

    for node in nodes:
        surface_dict = {x.surface: x for x in node.surfaces}
        if "Impervious" in surface_dict.keys():
            impervious_area = surface_dict["Impervious"].area
            grass_area = surface_dict["Grass"].area

            new_impervious_area = impervious_area * relative_change[node]
            new_grass_area = grass_area + (impervious_area - new_impervious_area)
            if new_grass_area < 0:
                print("not enough grass")
                break
            surface_dict["Impervious"].area = new_impervious_area
            surface_dict["Impervious"].capacity *= relative_change[node]

            surface_dict["Grass"].area = new_grass_area
            surface_dict["Grass"].capacity *= new_grass_area / grass_area
            for pol in constants.ADDITIVE_POLLUTANTS + ["volume"]:
                surface_dict["Grass"].storage[pol] *= new_grass_area / grass_area
            for pool in surface_dict["Grass"].nutrient_pool.pools:
                for nutrient in pool.storage.keys():
                    pool.storage[nutrient] *= new_grass_area / grass_area

debug_node_mb()

Simple function that iterates over nodes calling their mass balance function.

Source code in wsimod\orchestration\model.py
633
634
635
636
637
def debug_node_mb(self):
    """Simple function that iterates over nodes calling their mass balance
    function."""
    for node in self.nodelist:
        _ = node.node_mass_balance()

default_settings()

Incomplete function that enables easy specification of results storage.

Returns:

Type Description
dict

default settings

Source code in wsimod\orchestration\model.py
639
640
641
642
643
644
645
646
647
648
649
def default_settings(self):
    """Incomplete function that enables easy specification of results storage.

    Returns:
        (dict): default settings
    """
    return {
        "arcs": {"flows": True, "pollutants": True},
        "tanks": {"storages": True, "pollutants": True},
        "mass_balance": False,
    }

get_init_args(cls)

Get the arguments of the init method for a class and its superclasses.

Source code in wsimod\orchestration\model.py
163
164
165
166
167
168
169
170
def get_init_args(self, cls):
    """Get the arguments of the __init__ method for a class and its superclasses."""
    init_args = []
    for c in cls.__mro__:
        # Get the arguments of the __init__ method
        args = inspect.getfullargspec(c.__init__).args[1:]
        init_args.extend(args)
    return init_args

load(address, config_name='config.yml', overrides={})

Parameters:

Name Type Description Default
address
required
config_name
'config.yml'
overrides
{}
Source code in wsimod\orchestration\model.py
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def load(self, address, config_name="config.yml", overrides={}):
    """

    Args:
        address:
        config_name:
        overrides:
    """
    from ..extensions import apply_patches

    with open(os.path.join(address, config_name), "r") as file:
        data: dict = yaml.safe_load(file)

    for key, item in overrides.items():
        data[key] = item

    constants.POLLUTANTS = data.get("pollutants", constants.POLLUTANTS)
    constants.ADDITIVE_POLLUTANTS = data.get(
        "additive_pollutants", constants.ADDITIVE_POLLUTANTS
    )
    constants.NON_ADDITIVE_POLLUTANTS = data.get(
        "non_additive_pollutants", constants.NON_ADDITIVE_POLLUTANTS
    )
    constants.FLOAT_ACCURACY = float(
        data.get("float_accuracy", constants.FLOAT_ACCURACY)
    )
    self.__dict__.update(Model().__dict__)

    """
    FLAG:
        E.G. ADDITION FOR NEW ORCHESTRATION
    """
    load_extension_files(data.get("extensions", []))
    self.extensions = data.get("extensions", [])

    if "orchestration" in data.keys():
        # Update orchestration
        self.orchestration = data["orchestration"]

    if "nodes" not in data.keys():
        raise ValueError("No nodes found in the config")

    nodes = data["nodes"]

    for name, node in nodes.items():
        if "filename" in node.keys():
            node["data_input_dict"] = read_csv(
                os.path.join(address, node["filename"])
            )
            del node["filename"]
        if "surfaces" in node.keys():
            for key, surface in node["surfaces"].items():
                if "filename" in surface.keys():
                    node["surfaces"][key]["data_input_dict"] = read_csv(
                        os.path.join(address, surface["filename"])
                    )
                    del surface["filename"]
            node["surfaces"] = list(node["surfaces"].values())
    arcs = data.get("arcs", {})
    self.add_nodes(list(nodes.values()))
    self.add_arcs(list(arcs.values()))

    self.add_overrides(data.get("overrides", {}))

    if "dates" in data.keys():
        self.dates = [to_datetime(x) for x in data["dates"]]

    apply_patches(self)

load_pickle(fid)

Load model object to a pickle file, including the model states.

Parameters:

Name Type Description Default
fid str

File address to load the pickled model from

required

Returns:

Name Type Description
model obj

loaded model

Example

Load and run your model

my_model.load(model_dir,config_name = 'config.yml') _ = my_model.run()

Save it including its different states

my_model.save_pickle('model_at_end_of_run.pkl')

Load it at another time to resume the model from the end

of the previous run

new_model = Model() new_model = new_model.load_pickle('model_at_end_of_run.pkl')

Source code in wsimod\orchestration\model.py
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def load_pickle(self, fid):
    """Load model object to a pickle file, including the model states.

    Args:
        fid (str): File address to load the pickled model from

    Returns:
        model (obj): loaded model

    Example:
        >>> # Load and run your model
        >>> my_model.load(model_dir,config_name = 'config.yml')
        >>> _ = my_model.run()
        >>>
        >>> # Save it including its different states
        >>> my_model.save_pickle('model_at_end_of_run.pkl')
        >>>
        >>> # Load it at another time to resume the model from the end
        >>> # of the previous run
        >>> new_model = Model()
        >>> new_model = new_model.load_pickle('model_at_end_of_run.pkl')
    """
    file = open(fid, "rb")
    return pickle.load(file)

reinit()

Reinitialise by ending all node/arc timesteps and calling reinit function in all nodes (generally zero-ing their storage values).

Source code in wsimod\orchestration\model.py
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
def reinit(self):
    """Reinitialise by ending all node/arc timesteps and calling reinit function in
    all nodes (generally zero-ing their storage values)."""
    for node in self.nodes.values():
        node.end_timestep()
        for prop in dir(node):
            prop = node.__getattribute__(prop)
            for prop_ in dir(prop):
                if prop_ == "reinit":
                    prop_ = node.__getattribute__(prop_)
                    prop_()

    for arc in self.arcs.values():
        arc.end_timestep()

run(dates=None, settings=None, record_arcs=None, record_tanks=None, record_surfaces=None, verbose=True, record_all=True, objectives=[])

Run the model object with the default orchestration.

Parameters:

Name Type Description Default
dates list

Dates to simulate. Defaults to None, which simulates all dates that the model has data for.

None
settings dict

Dict to specify what results are stored, not currently used. Defaults to None.

None
record_arcs list

List of arcs to store result for. Defaults to None.

None
record_tanks list

List of nodes with water stores to store results for. Defaults to None.

None
record_surfaces list

List of tuples of (land node, surface) to store results for. Defaults to None.

None
verbose bool

Prints updates on simulation if true. Defaults to True.

True
record_all bool

Specifies to store all results. Defaults to True.

True
objectives list

A list of dicts with objectives to calculate (see examples). Defaults to [].

[]

Returns:

Name Type Description
flows

simulated flows in a list of dicts

tanks

simulated tanks storages in a list of dicts

objective_results

list of values based on objectives list

surfaces

simulated surface storages of land nodes in a list of dicts

Examples:

Run a model without storing any results but calculating objectives

import statistics as stats objectives = [{'element_type' : 'flows', 'name' : 'my_river', 'function' : @ (x, ) stats.mean([y['phosphate'] for y in x]) }, {'element_type' : 'tanks', 'name' : 'my_reservoir', 'function' : @ (x, model) sum([y['storage'] < (model.nodes ['my_reservoir'].tank.capacity / 2) for y in x]) }] , _, results, _ = my_model.run(record_all = False, objectives = objectives)

Source code in wsimod\orchestration\model.py
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
def run(
    self,
    dates=None,
    settings=None,
    record_arcs=None,
    record_tanks=None,
    record_surfaces=None,
    verbose=True,
    record_all=True,
    objectives=[],
):
    """Run the model object with the default orchestration.

    Args:
        dates (list, optional): Dates to simulate. Defaults to None, which
            simulates all dates that the model has data for.
        settings (dict, optional): Dict to specify what results are stored,
            not currently used. Defaults to None.
        record_arcs (list, optional): List of arcs to store result for.
            Defaults to None.
        record_tanks (list, optional): List of nodes with water stores to
            store results for. Defaults to None.
        record_surfaces (list, optional): List of tuples of
            (land node, surface) to store results for. Defaults to None.
        verbose (bool, optional): Prints updates on simulation if true.
            Defaults to True.
        record_all (bool, optional): Specifies to store all results.
            Defaults to True.
        objectives (list, optional): A list of dicts with objectives to
            calculate (see examples). Defaults to [].

    Returns:
        flows: simulated flows in a list of dicts
        tanks: simulated tanks storages in a list of dicts
        objective_results: list of values based on objectives list
        surfaces: simulated surface storages of land nodes in a list of dicts

    Examples:
        # Run a model without storing any results but calculating objectives
        import statistics as stats
        objectives = [{'element_type' : 'flows',
                       'name' : 'my_river',
                       'function' : @ (x, _) stats.mean([y['phosphate'] for y in x])
                       },
                      {'element_type' : 'tanks',
                       'name' : 'my_reservoir',
                       'function' : @ (x, model) sum([y['storage'] < (model.nodes
                       ['my_reservoir'].tank.capacity / 2) for y in x])
                       }]
        _, _, results, _ = my_model.run(record_all = False, objectives = objectives)
    """
    if record_arcs is None:
        record_arcs = []
        if record_all:
            record_arcs = list(self.arcs.keys())
    if record_tanks is None:
        record_tanks = []

    if record_surfaces is None:
        record_surfaces = []

    if settings is None:
        settings = self.default_settings()

    def blockPrint():
        """

        Returns:

        """
        stdout = sys.stdout
        sys.stdout = open(os.devnull, "w")
        return stdout

    def enablePrint(stdout):
        """

        Args:
            stdout:
        """
        sys.stdout = stdout

    if not verbose:
        stdout = blockPrint()
    if dates is None:
        dates = self.dates

    for objective in objectives:
        if objective["element_type"] == "tanks":
            record_tanks.append(objective["name"])
        elif objective["element_type"] == "flows":
            record_arcs.append(objective["name"])
        elif objective["element_type"] == "surfaces":
            record_surfaces.append((objective["name"], objective["surface"]))
        else:
            print("element_type not recorded")

    flows = []
    tanks = []
    surfaces = []
    for date in tqdm(dates, disable=(not verbose)):
        # for date in dates:
        for node in self.nodelist:
            node.t = date
            node.monthyear = date.to_period("M")

        # Iterate over orchestration
        for timestep_item in self.orchestration:
            for node_type, function in timestep_item.items():
                for node in self.nodes_type.get(node_type, {}).values():
                    getattr(node, function)()

        # river
        for node_name in self.river_discharge_order:
            self.nodes[node_name].distribute()

        # mass balance checking
        # nodes/system
        sys_in = self.empty_vqip()
        sys_out = self.empty_vqip()
        sys_ds = self.empty_vqip()

        # arcs
        for arc in self.arcs.values():
            in_, ds_, out_ = arc.arc_mass_balance()
            for v in constants.ADDITIVE_POLLUTANTS + ["volume"]:
                sys_in[v] += in_[v]
                sys_out[v] += out_[v]
                sys_ds[v] += ds_[v]
        for node in self.nodelist:
            # print(node.name)
            in_, ds_, out_ = node.node_mass_balance()

            # temp = {'name' : node.name,
            #         'time' : date}
            # for lab, dict_ in zip(['in','ds','out'], [in_, ds_, out_]):
            #     for key, value in dict_.items():
            #         temp[(lab, key)] = value
            # node_mb.append(temp)

            for v in constants.ADDITIVE_POLLUTANTS + ["volume"]:
                sys_in[v] += in_[v]
                sys_out[v] += out_[v]
                sys_ds[v] += ds_[v]

        for v in constants.ADDITIVE_POLLUTANTS + ["volume"]:
            # Find the largest value of in_, out_, ds_
            largest = max(sys_in[v], sys_in[v], sys_in[v])

            if largest > constants.FLOAT_ACCURACY:
                # Convert perform comparison in a magnitude to match the largest
                # value
                magnitude = 10 ** int(log10(largest))
                in_10 = sys_in[v] / magnitude
                out_10 = sys_in[v] / magnitude
                ds_10 = sys_in[v] / magnitude
            else:
                in_10 = sys_in[v]
                ds_10 = sys_in[v]
                out_10 = sys_in[v]

            if (in_10 - ds_10 - out_10) > constants.FLOAT_ACCURACY:
                print(
                    "system mass balance error for "
                    + v
                    + " of "
                    + str(sys_in[v] - sys_ds[v] - sys_out[v])
                )

        # Store results
        for arc in record_arcs:
            arc = self.arcs[arc]
            flows.append(
                {"arc": arc.name, "flow": arc.vqip_out["volume"], "time": date}
            )
            for pol in constants.POLLUTANTS:
                flows[-1][pol] = arc.vqip_out[pol]

        for node in record_tanks:
            node = self.nodes[node]
            tanks.append(
                {
                    "node": node.name,
                    "storage": node.tank.storage["volume"],
                    "time": date,
                }
            )

        for node, surface in record_surfaces:
            node = self.nodes[node]
            name = node.name
            surface = node.get_surface(surface)
            if not isinstance(surface, ImperviousSurface):
                surfaces.append(
                    {
                        "node": name,
                        "surface": surface.surface,
                        "percolation": surface.percolation["volume"],
                        "subsurface_r": surface.subsurface_flow["volume"],
                        "surface_r": surface.infiltration_excess["volume"],
                        "storage": surface.storage["volume"],
                        "evaporation": surface.evaporation["volume"],
                        "precipitation": surface.precipitation["volume"],
                        "tank_recharge": surface.tank_recharge,
                        "capacity": surface.capacity,
                        "time": date,
                        "et0_coef": surface.et0_coefficient,
                        # 'crop_factor' : surface.crop_factor
                    }
                )
                for pol in constants.POLLUTANTS:
                    surfaces[-1][pol] = surface.storage[pol]
            else:
                surfaces.append(
                    {
                        "node": name,
                        "surface": surface.surface,
                        "storage": surface.storage["volume"],
                        "evaporation": surface.evaporation["volume"],
                        "precipitation": surface.precipitation["volume"],
                        "capacity": surface.capacity,
                        "time": date,
                    }
                )
                for pol in constants.POLLUTANTS:
                    surfaces[-1][pol] = surface.storage[pol]
        if record_all:
            for node in self.nodes.values():
                for prop_ in dir(node):
                    prop = node.__getattribute__(prop_)
                    if prop.__class__ in [QueueTank, Tank, ResidenceTank]:
                        tanks.append(
                            {
                                "node": node.name,
                                "time": date,
                                "storage": prop.storage["volume"],
                                "prop": prop_,
                            }
                        )
                        for pol in constants.POLLUTANTS:
                            tanks[-1][pol] = prop.storage[pol]

            for name, node in self.nodes_type.get("Land", {}).items():
                for surface in node.surfaces:
                    if not isinstance(surface, ImperviousSurface):
                        surfaces.append(
                            {
                                "node": name,
                                "surface": surface.surface,
                                "percolation": surface.percolation["volume"],
                                "subsurface_r": surface.subsurface_flow["volume"],
                                "surface_r": surface.infiltration_excess["volume"],
                                "storage": surface.storage["volume"],
                                "evaporation": surface.evaporation["volume"],
                                "precipitation": surface.precipitation["volume"],
                                "tank_recharge": surface.tank_recharge,
                                "capacity": surface.capacity,
                                "time": date,
                                "et0_coef": surface.et0_coefficient,
                                # 'crop_factor' : surface.crop_factor
                            }
                        )
                        for pol in constants.POLLUTANTS:
                            surfaces[-1][pol] = surface.storage[pol]
                    else:
                        surfaces.append(
                            {
                                "node": name,
                                "surface": surface.surface,
                                "storage": surface.storage["volume"],
                                "evaporation": surface.evaporation["volume"],
                                "precipitation": surface.precipitation["volume"],
                                "capacity": surface.capacity,
                                "time": date,
                            }
                        )
                        for pol in constants.POLLUTANTS:
                            surfaces[-1][pol] = surface.storage[pol]

        for node in self.nodes.values():
            node.end_timestep()

        for arc in self.arcs.values():
            arc.end_timestep()
    objective_results = []
    for objective in objectives:
        if objective["element_type"] == "tanks":
            val = objective["function"](
                [x for x in tanks if x["node"] == objective["name"]], self
            )
        elif objective["element_type"] == "flows":
            val = objective["function"](
                [x for x in flows if x["arc"] == objective["name"]], self
            )
        elif objective["element_type"] == "surfaces":
            val = objective["function"](
                [
                    x
                    for x in surfaces
                    if (x["node"] == objective["name"])
                    & (x["surface"] == objective["surface"])
                ],
                self,
            )
        objective_results.append(val)
    if not verbose:
        enablePrint(stdout)
    return flows, tanks, objective_results, surfaces

save(address, config_name='config.yml', compress=False)

Save the model object to a yaml file and input data to csv.gz format in the directory specified.

Parameters:

Name Type Description Default
address str

Path to a directory

required
config_name str

Name of yaml model file. Defaults to 'model.yml'

'config.yml'
Source code in wsimod\orchestration\model.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
def save(self, address, config_name="config.yml", compress=False):
    """Save the model object to a yaml file and input data to csv.gz format in the
    directory specified.

    Args:
        address (str): Path to a directory
        config_name (str, optional): Name of yaml model file.
            Defaults to 'model.yml'
    """
    if not os.path.exists(address):
        os.mkdir(address)
    nodes = {}

    if compress:
        file_type = "csv.gz"
    else:
        file_type = "csv"
    for node in self.nodes.values():
        init_args = self.get_init_args(node.__class__)
        special_args = set(["surfaces", "parent", "data_input_dict"])

        node_props = {
            x: getattr(node, x) for x in set(init_args).difference(special_args)
        }
        node_props["type_"] = node.__class__.__name__
        node_props["node_type_override"] = (
            repr(node.__class__).split(".")[-1].replace("'>", "")
        )

        if "surfaces" in init_args:
            surfaces = {}
            for surface in node.surfaces:
                surface_args = self.get_init_args(surface.__class__)
                surface_props = {
                    x: getattr(surface, x)
                    for x in set(surface_args).difference(special_args)
                }
                surface_props["type_"] = surface.__class__.__name__

                # Exceptions...
                # TODO I need a better way to do this
                del surface_props["capacity"]
                if set(["rooting_depth", "pore_depth"]).intersection(surface_args):
                    del surface_props["depth"]
                if "data_input_dict" in surface_args:
                    if surface.data_input_dict:
                        filename = (
                            "{0}-{1}-inputs.{2}".format(
                                node.name, surface.surface, file_type
                            )
                            .replace("(", "_")
                            .replace(")", "_")
                            .replace("/", "_")
                            .replace(" ", "_")
                        )
                        write_csv(
                            surface.data_input_dict,
                            {"node": node.name, "surface": surface.surface},
                            os.path.join(address, filename),
                            compress=compress,
                        )
                        surface_props["filename"] = filename
                surfaces[surface_props["surface"]] = surface_props
            node_props["surfaces"] = surfaces

        if "data_input_dict" in init_args:
            if node.data_input_dict:
                filename = "{0}-inputs.{1}".format(node.name, file_type)
                write_csv(
                    node.data_input_dict,
                    {"node": node.name},
                    os.path.join(address, filename),
                    compress=compress,
                )
                node_props["filename"] = filename

        nodes[node.name] = node_props

    arcs = {}
    for arc in self.arcs.values():
        init_args = self.get_init_args(arc.__class__)
        special_args = set(["in_port", "out_port"])
        arc_props = {
            x: getattr(arc, x) for x in set(init_args).difference(special_args)
        }
        arc_props["type_"] = arc.__class__.__name__
        arc_props["in_port"] = arc.in_port.name
        arc_props["out_port"] = arc.out_port.name
        arcs[arc.name] = arc_props

    data = {
        "nodes": nodes,
        "arcs": arcs,
        "orchestration": self.orchestration,
        "pollutants": constants.POLLUTANTS,
        "additive_pollutants": constants.ADDITIVE_POLLUTANTS,
        "non_additive_pollutants": constants.NON_ADDITIVE_POLLUTANTS,
        "float_accuracy": constants.FLOAT_ACCURACY,
        "extensions": self.extensions,
        "river_discharge_order": self.river_discharge_order,
    }
    if hasattr(self, "dates"):
        data["dates"] = [str(x) for x in self.dates]

    def coerce_value(value):
        """

        Args:
            value:

        Returns:

        """
        conversion_options = {
            "__float__": float,
            "__iter__": list,
            "__int__": int,
            "__str__": str,
            "__bool__": bool,
        }
        converted = False
        for property, func in conversion_options.items():
            if hasattr(value, property):
                try:
                    yaml.safe_dump(func(value))
                    value = func(value)
                    converted = True
                    break
                except Exception:
                    raise ValueError(f"Cannot dump: {value} of type {type(value)}")
        if not converted:
            raise ValueError(f"Cannot dump: {value} of type {type(value)}")

        return value

    def check_and_coerce_dict(data_dict):
        """

        Args:
            data_dict:
        """
        for key, value in data_dict.items():
            if isinstance(value, dict):
                check_and_coerce_dict(value)
            else:
                try:
                    yaml.safe_dump(value)
                except yaml.representer.RepresenterError:
                    if hasattr(value, "__iter__"):
                        for idx, val in enumerate(value):
                            if isinstance(val, dict):
                                check_and_coerce_dict(val)
                            else:
                                value[idx] = coerce_value(val)
                    data_dict[key] = coerce_value(value)

    check_and_coerce_dict(data)

    write_yaml(address, config_name, data)

save_pickle(fid)

Save model object to a pickle file, including saving the model states.

Parameters:

Name Type Description Default
fid str

File address to save the pickled model to

required

Returns:

Name Type Description
message str

Exit message of pickle dump

Source code in wsimod\orchestration\model.py
426
427
428
429
430
431
432
433
434
435
436
437
def save_pickle(self, fid):
    """Save model object to a pickle file, including saving the model states.

    Args:
        fid (str): File address to save the pickled model to

    Returns:
        message (str): Exit message of pickle dump
    """
    file = open(fid, "wb")
    pickle.dump(self, file)
    return file.close()

to_datetime

Source code in wsimod\orchestration\model.py
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class to_datetime:
    """"""

    # TODO document and make better
    def __init__(self, date_string):
        """Simple datetime wrapper that has key properties used in WSIMOD components.

        Args:
            date_string (str): A string containing the date, expected in
                format %Y-%m-%d or %Y-%m.
        """
        self._date = self._parse_date(date_string)

    def __str__(self):
        return self._date.strftime("%Y-%m-%d")

    def __repr__(self):
        return self._date.strftime("%Y-%m-%d")

    @property
    def dayofyear(self):
        """

        Returns:

        """
        return self._date.timetuple().tm_yday

    @property
    def day(self):
        """

        Returns:

        """
        return self._date.day

    @property
    def year(self):
        """

        Returns:

        """
        return self._date.year

    @property
    def month(self):
        """

        Returns:

        """
        return self._date.month

    def to_period(self, args="M"):
        """

        Args:
            args:

        Returns:

        """
        return to_datetime(f"{self._date.year}-{str(self._date.month).zfill(2)}")

    def is_leap_year(self):
        """

        Returns:

        """
        year = self._date.year
        return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0)

    def _parse_date(self, date_string, date_format="%Y-%m-%d %H:%M:%S"):
        try:
            return datetime.strptime(date_string, date_format)
        except ValueError:
            try:
                return datetime.strptime(date_string, "%Y-%m-%d")
            except ValueError:
                try:
                    # Check if valid 'YYYY-MM' format
                    if len(date_string.split("-")[0]) == 4:
                        int(date_string.split("-")[0])
                    if len(date_string.split("-")[1]) == 2:
                        int(date_string.split("-")[1])
                    return date_string
                except ValueError:
                    raise ValueError

    def __eq__(self, other):
        if isinstance(other, to_datetime):
            return self._date == other._date
        return False

    def __hash__(self):
        return hash(self._date)

day property

Returns:

dayofyear property

Returns:

month property

Returns:

year property

Returns:

__init__(date_string)

Simple datetime wrapper that has key properties used in WSIMOD components.

Parameters:

Name Type Description Default
date_string str

A string containing the date, expected in format %Y-%m-%d or %Y-%m.

required
Source code in wsimod\orchestration\model.py
32
33
34
35
36
37
38
39
def __init__(self, date_string):
    """Simple datetime wrapper that has key properties used in WSIMOD components.

    Args:
        date_string (str): A string containing the date, expected in
            format %Y-%m-%d or %Y-%m.
    """
    self._date = self._parse_date(date_string)

is_leap_year()

Returns:

Source code in wsimod\orchestration\model.py
 94
 95
 96
 97
 98
 99
100
101
def is_leap_year(self):
    """

    Returns:

    """
    year = self._date.year
    return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0)

to_period(args='M')

Parameters:

Name Type Description Default
args
'M'

Returns:

Source code in wsimod\orchestration\model.py
83
84
85
86
87
88
89
90
91
92
def to_period(self, args="M"):
    """

    Args:
        args:

    Returns:

    """
    return to_datetime(f"{self._date.year}-{str(self._date.month).zfill(2)}")

check_and_convert_string(value)

Parameters:

Name Type Description Default
value
required

Returns:

Source code in wsimod\orchestration\model.py
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
def check_and_convert_string(value):
    """

    Args:
        value:

    Returns:

    """
    try:
        return int(value)
    except Exception:
        try:
            return float(value)
        except Exception:
            if value == "None":
                return None
            else:
                return value

convert_keys(d)

Parameters:

Name Type Description Default
d
required

Returns:

Source code in wsimod\orchestration\model.py
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
def convert_keys(d):
    """

    Args:
        d:

    Returns:

    """
    # base case: if d is not a dict, return d
    if not isinstance(d, dict):
        return d
    # recursive case: create a new dict with int keys and converted values
    new_d = {}
    for k, v in d.items():
        new_d[check_and_convert_string(k)] = convert_keys(v)
    return new_d

csv2yaml(address, config_name='config_csv.yml', csv_folder_name='csv')

Parameters:

Name Type Description Default
address
required
config_name
'config_csv.yml'
csv_folder_name
'csv'
Source code in wsimod\orchestration\model.py
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
def csv2yaml(address, config_name="config_csv.yml", csv_folder_name="csv"):
    """

    Args:
        address:
        config_name:
        csv_folder_name:
    """
    csv_path = os.path.join(address, csv_folder_name)
    csv_list = [
        os.path.join(csv_path, f)
        for f in os.listdir(csv_path)
        if os.path.isfile(os.path.join(csv_path, f))
    ]
    objs_type = {"nodes": {}, "arcs": {}}
    for fid in csv_list:
        with open(fid, "rt") as f:
            if "Dates" in fid:
                reader = csv.reader(f, delimiter=",")
                dates = []
                for row in reader:
                    dates.append(row[0])
                objs_type["dates"] = dates[1:]
            else:
                reader = csv.DictReader(f, delimiter=",")
                data = {}
                for row in reader:
                    formatted_row = {}
                    for key, value in row.items():
                        if value:
                            if ("[" in value) & ("]" in value):
                                # Convert lists
                                value = value.strip("[]")  # Remove the brackets
                                value = value.replace("'", "")  # Remove the string bits
                                value = value.split(", ")  # Split by comma
                                value = [check_and_convert_string(x) for x in value]
                            else:
                                # Convert ints, floats and strings
                                value = check_and_convert_string(value)

                            # Convert key and store converted values
                            formatted_row[key] = value
                    if "Sim_params" not in fid:
                        label = formatted_row["label"]
                        del formatted_row["label"]

                    formatted_row = unflatten_dict(formatted_row)
                    formatted_row = convert_keys(formatted_row)

                    # Convert nested dicts dicts
                    data[row["name"]] = formatted_row
                if "Sim_params" in fid:
                    objs_type = {
                        **objs_type,
                        **{x: y["value"] for x, y in data.items()},
                    }
                else:
                    objs_type[label] = {**objs_type[label], **data}
    write_yaml(address, config_name, objs_type)

flatten_dict(d, parent_key='', sep='-')

Parameters:

Name Type Description Default
d
required
parent_key
''
sep
'-'

Returns:

Source code in wsimod\orchestration\model.py
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
def flatten_dict(d, parent_key="", sep="-"):
    """

    Args:
        d:
        parent_key:
        sep:

    Returns:

    """
    # Initialize an empty dictionary
    flat_dict = {}
    # Loop through each key-value pair in the input dictionary
    for k, v in d.items():
        # Construct a new key by appending the parent key and separator
        new_key = str(parent_key) + sep + str(k) if parent_key else k
        # If the value is another dictionary, call the function recursively
        if isinstance(v, dict):
            flat_dict.update(flatten_dict(v, new_key, sep))
        # Otherwise, add the key-value pair to the flat dictionary
        else:
            flat_dict[new_key] = v
    # Return the flattened dictionary
    return flat_dict

load_extension_files(files)

Load extension files from a list of files.

Parameters:

Name Type Description Default
files list[str]

List of file paths to load

required

Raises:

Type Description
ValueError

If file is not a .py file

FileNotFoundError

If file does not exist

Source code in wsimod\orchestration\model.py
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
def load_extension_files(files: list[str]) -> None:
    """Load extension files from a list of files.

    Args:
        files (list[str]): List of file paths to load

    Raises:
        ValueError: If file is not a .py file
        FileNotFoundError: If file does not exist
    """
    import importlib
    from pathlib import Path

    for file in files:
        if not file.endswith(".py"):
            raise ValueError(f"Only .py files are supported. Invalid file: {file}")
        if not Path(file).exists():
            raise FileNotFoundError(f"File {file} does not exist")

        spec = importlib.util.spec_from_file_location("module.name", file)
        module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(module)

open_func(file_path, mode)

Parameters:

Name Type Description Default
file_path
required
mode
required

Returns:

Source code in wsimod\orchestration\model.py
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
def open_func(file_path, mode):
    """

    Args:
        file_path:
        mode:

    Returns:

    """
    if mode == "rt" and file_path.endswith(".gz"):
        return gzip.open(file_path, mode)
    else:
        return open(file_path, mode)

read_csv(file_path, delimiter=',')

Parameters:

Name Type Description Default
file_path
required
delimiter
','

Returns:

Source code in wsimod\orchestration\model.py
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
def read_csv(file_path, delimiter=","):
    """

    Args:
        file_path:
        delimiter:

    Returns:

    """
    with open_func(file_path, "rt") as f:
        reader = csv.DictReader(f, delimiter=delimiter)
        data = {}
        for row in reader:
            key = (row["variable"], to_datetime(row["time"]))
            value = float(row["value"])
            data[key] = value
        return data

unflatten_dict(d, sep=':')

Parameters:

Name Type Description Default
d
required
sep
':'

Returns:

Source code in wsimod\orchestration\model.py
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
def unflatten_dict(d, sep=":"):
    """

    Args:
        d:
        sep:

    Returns:

    """
    result = {}
    for k, v in d.items():
        keys = k.split(sep)
        current = result
        for key in keys[:-1]:
            current = current.setdefault(key, {})
        current[keys[-1]] = v
    return result

write_csv(data, fixed_data={}, filename='', compress=False)

Parameters:

Name Type Description Default
data
required
fixed_data
{}
filename
''
compress
False
Source code in wsimod\orchestration\model.py
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
def write_csv(data, fixed_data={}, filename="", compress=False):
    """

    Args:
        data:
        fixed_data:
        filename:
        compress:
    """
    if compress:
        open_func = gzip.open
        mode = "wt"
    else:
        open_func = open
        mode = "w"
    with open_func(filename, mode, newline="") as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(list(fixed_data.keys()) + ["variable", "time", "value"])
        fixed_data_values = list(fixed_data.values())
        for key, value in data.items():
            writer.writerow(fixed_data_values + list(key) + [str(value)])

write_yaml(address, config_name, data)

Parameters:

Name Type Description Default
address
required
config_name
required
data
required
Source code in wsimod\orchestration\model.py
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
def write_yaml(address, config_name, data):
    """

    Args:
        address:
        config_name:
        data:
    """
    with open(os.path.join(address, config_name), "w") as file:
        yaml.dump(
            data,
            file,
            default_flow_style=False,
            sort_keys=False,
            Dumper=yaml.SafeDumper,
        )

yaml2csv(address, config_name='config.yml', csv_folder_name='csv')

Parameters:

Name Type Description Default
address
required
config_name
'config.yml'
csv_folder_name
'csv'
Source code in wsimod\orchestration\model.py
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
def yaml2csv(address, config_name="config.yml", csv_folder_name="csv"):
    """

    Args:
        address:
        config_name:
        csv_folder_name:
    """
    with open(os.path.join(address, config_name), "r") as file:
        data = yaml.safe_load(file)

    # Format to easy format to write to database
    objs_type = {}
    for objects, object_label in zip([data["nodes"], data["arcs"]], ["nodes", "arcs"]):
        for key, value in objects.items():
            if isinstance(value, dict):
                # Identify node type
                if "node_type_override" in value.keys():
                    type_ = value["node_type_override"]
                elif "type_" in value.keys():
                    type_ = value["type_"]
                else:
                    type_ = False

                if type_:
                    # Flatten dictionaries
                    new_dict = {}
                    if type_ not in objs_type.keys():
                        objs_type[type_] = {}

                    for key_, value_ in value.items():
                        if isinstance(value_, dict):
                            new_dict[key_] = flatten_dict(value_, key_, ":")

                    for key_, value_ in new_dict.items():
                        del value[key_]
                        value = {**value, **value_}
                    value["label"] = object_label
                    objs_type[type_][key] = value

    del data["nodes"]
    del data["arcs"]
    if "dates" in data.keys():
        objs_type["Dates"] = data["dates"]
        del data["dates"]

    objs_type["Sim_params"] = {x: {"name": x, "value": y} for x, y in data.items()}

    csv_dir = os.path.join(address, csv_folder_name)

    if not os.path.exists(csv_dir):
        os.mkdir(csv_dir)

    for key, value in objs_type.items():
        if key == "Sim_params":
            fields = ["name", "value"]
        elif key == "Dates":
            fields = ["date"]
        else:
            fields = {}
            for value_ in value.values():
                fields = {**fields, **value_}

            del fields["name"]
            fields = ["name"] + list(fields.keys())

        with open(
            os.path.join(csv_dir, "{0}.csv".format(key)), "w", newline=""
        ) as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(fields)
            if key == "Dates":
                for date in value:
                    writer.writerow([date])
            else:
                for key_, value_ in value.items():
                    writer.writerow(
                        [str(value_[x]) if x in value_.keys() else None for x in fields]
                    )