WSIMOD model demonstration - Oxford (.py)¶
Note - this script can also be opened in interactive Python if you wanted to play around. On the GitHub it is in docs/demo/scripts
-
3.1 Freshwater Treatment Works
3.2 Land
3.3 Demand
3.4 Reservoir
3.5 Distribution
3.6 Wastewater Treatment Works
3.7 Sewers
3.8 Groundwater
3.9 Node list
-
4.1 Arc parameters
4.2 Create the arcs
-
7.1 Validation
We will cover a demo WSIMOD case study¶
The glamorous town of Oxford will be our demo case study. Below, we will create these nodes and arcs, orchestrate them into a model, and run simulations.
Although GIS is pretty, the schematic below is a more accurate representation of what will be created. WSIMOD treats everything as a node or an arc.
Imports and forcing data¶
Import packages
import os
import pandas as pd
from wsimod.arcs.arcs import Arc
from wsimod.core import constants
from wsimod.nodes.catchment import Catchment
from wsimod.nodes.demand import ResidentialDemand
from wsimod.nodes.land import Land
from wsimod.nodes.nodes import Node
from wsimod.nodes.sewer import Sewer
from wsimod.nodes.storage import Groundwater, Reservoir
from wsimod.nodes.waste import Waste
from wsimod.nodes.wtw import FWTW, WWTW
from wsimod.orchestration.model import Model
os.environ["USE_PYGEOS"] = "0"
import geopandas as gpd
from matplotlib import pyplot as plt
from shapely.geometry import LineString
Load input data
# Select the root path for the data folder. Use the appropriate value for your case.
data_folder = os.path.join(os.path.abspath(""), "docs", "demo", "data")
input_fid = os.path.join(data_folder, "processed", "timeseries_data.csv")
input_data = pd.read_csv(input_fid)
input_data.loc[input_data.variable == "flow", "value"] *= constants.M3_S_TO_M3_DT
input_data.loc[input_data.variable == "precipitation", "value"] *= constants.MM_TO_M
input_data.date = pd.to_datetime(input_data.date)
data_input_dict = input_data.set_index(["variable", "date"]).value.to_dict()
data_input_dict = (
input_data.groupby("site")
.apply(lambda x: x.set_index(["variable", "date"]).value.to_dict())
.to_dict()
)
print(input_data.sample(10))
site date variable value 40226 thames 2011-09-03 nitrogen 0.006291 27881 thames 2009-10-06 nitrate 0.005799 65696 evenlode 2009-08-26 boron 0.000061 77511 oxford_land 2010-02-09 et0 0.002000 29458 cherwell 2010-02-04 sulphate 0.057974 38208 ray 2010-02-18 nitrogen 0.007623 49888 ray 2010-03-22 potassium 0.006871 62446 ray 2012-09-17 magnesium 0.004829 37491 evenlode 2012-02-27 nitrogen 0.006310 56626 ray 2012-09-21 calcium 0.119300
/tmp/ipykernel_2132/946595242.py:12: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning. .apply(lambda x: x.set_index(["variable", "date"]).value.to_dict())
Input data is stored in dicts
print(data_input_dict["cherwell"][("boron", pd.to_datetime("2010-11-20"))])
6.985714285714286e-05
We select dates that are available in the input data
dates = input_data.date.unique()
dates = dates[dates.argsort()]
dates = [pd.Timestamp(x) for x in dates]
print(dates[0:10])
[Timestamp('2009-03-03 00:00:00'), Timestamp('2009-03-04 00:00:00'), Timestamp('2009-03-05 00:00:00'), Timestamp('2009-03-06 00:00:00'), Timestamp('2009-03-07 00:00:00'), Timestamp('2009-03-08 00:00:00'), Timestamp('2009-03-09 00:00:00'), Timestamp('2009-03-10 00:00:00'), Timestamp('2009-03-11 00:00:00'), Timestamp('2009-03-12 00:00:00')]
We can specify the pollutants. In this example we choose based on what pollutants we have input data for.
constants.POLLUTANTS = input_data.variable.unique().tolist()
constants.POLLUTANTS.remove("flow")
constants.POLLUTANTS.remove("precipitation")
constants.POLLUTANTS.remove("et0")
constants.NON_ADDITIVE_POLLUTANTS = ["temperature"]
constants.ADDITIVE_POLLUTANTS = list(
set(constants.POLLUTANTS).difference(constants.NON_ADDITIVE_POLLUTANTS)
)
constants.FLOAT_ACCURACY = 1e-11
print(constants.POLLUTANTS)
['temperature', 'silicon', 'fluoride', 'chloride', 'nitrate', 'sulphate', 'nitrogen', 'sodium', 'potassium', 'calcium', 'magnesium', 'boron']
Create nodes¶
For waste nodes, no parameters are needed, they are just the model outlet
thames_above_abingdon = Waste(name="thames_above_abingdon")
For junctions and abstraction locations, we can simply use the default nodes
farmoor_abstraction = Node(name="farmoor_abstraction")
evenlode_thames = Node(name="evenlode_thames")
cherwell_ray = Node(name="cherwell_ray")
cherwell_thames = Node(name="cherwell_thames")
thames_mixer = Node(name="thames_mixer")
For catchment nodes, we only need to specify the input data (as a dictionary format).
evenlode = Catchment(name="evenlode", data_input_dict=data_input_dict["evenlode"])
thames = Catchment(name="thames", data_input_dict=data_input_dict["thames"])
ray = Catchment(name="ray", data_input_dict=data_input_dict["ray"])
cherwell = Catchment(name="cherwell", data_input_dict=data_input_dict["cherwell"])
We can see that, even though we provided mimimal information (name and input data) each node comes with many predefined functions.
print(dir(evenlode))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'apply_overrides', 'blend_vqip', 'check_basic', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'data_input_dict', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'end_timestep_', 'extract_vqip', 'extract_vqip_c', 'get_avail', 'get_connected', 'get_data_input', 'get_direction_arcs', 'get_flow', 'in_arcs', 'in_arcs_type', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'node_mass_balance', 'out_arcs', 'out_arcs_type', 'pull_check', 'pull_check_abstraction', 'pull_check_basic', 'pull_check_deny', 'pull_check_handler', 'pull_distributed', 'pull_set', 'pull_set_abstraction', 'pull_set_deny', 'pull_set_handler', 'push_check', 'push_check_accept', 'push_check_basic', 'push_check_deny', 'push_check_handler', 'push_distributed', 'push_set', 'push_set_deny', 'push_set_handler', 'query_handler', 'reinit', 'route', 'sum_vqip', 't', 'total_in', 'total_out', 'total_to_concentration', 'unrouted_water', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c']
Freshwater treatment works¶
Each type of node uses different parameters (see API reference). Below we create a freshwater treatment works (FWTW)
oxford_fwtw = FWTW(
service_reservoir_storage_capacity=1e5,
service_reservoir_storage_area=2e4,
treatment_throughput_capacity=4.5e4,
name="oxford_fwtw",
)
Each node type has different types of functionality available
print(dir(oxford_fwtw))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_liquor_multiplier', '_percent_solids', 'apply_overrides', 'blend_vqip', 'calculate_volume', 'check_basic', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'current_input', 'data_input_dict', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'end_timestep_', 'extract_vqip', 'extract_vqip_c', 'get_connected', 'get_data_input', 'get_direction_arcs', 'get_excess_throughput', 'in_arcs', 'in_arcs_type', 'liquor', 'liquor_multiplier', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'node_mass_balance', 'out_arcs', 'out_arcs_type', 'percent_solids', 'previous_pulled', 'process_parameters', 'pull_check', 'pull_check_basic', 'pull_check_deny', 'pull_check_fwtw', 'pull_check_handler', 'pull_distributed', 'pull_set', 'pull_set_deny', 'pull_set_fwtw', 'pull_set_handler', 'push_check', 'push_check_accept', 'push_check_basic', 'push_check_deny', 'push_check_handler', 'push_distributed', 'push_set', 'push_set_deny', 'push_set_handler', 'query_handler', 'reinit', 'service_reservoir_initial_storage', 'service_reservoir_storage_area', 'service_reservoir_storage_capacity', 'service_reservoir_storage_elevation', 'service_reservoir_tank', 'solids', 'sum_vqip', 't', 'total_deficit', 'total_in', 'total_out', 'total_pulled', 'total_to_concentration', 'treat_current_input', 'treat_water', 'treated', 'treatment_throughput_capacity', 'unpushed_sludge', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c']
The FWTW node has a tank representing the service reservoirs, we can see that it has been initialised empty.
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
If we try to pull water from the FWTW, it responds that there is no water to pull.
print(oxford_fwtw.pull_check({"volume": 10}))
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
If we add in some water, we see the pull check responds that water is available.
oxford_fwtw.service_reservoir_tank.storage["volume"] += 25
print(oxford_fwtw.pull_check({"volume": 10}))
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 10.0}
When we set a pull request, we see that we successfully receive the water and the tank is updated.
reply = oxford_fwtw.pull_set({"volume": 10})
print(reply)
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 10.0} {'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
Land¶
We will now create a land node, it is a bit involved so you might want to skip ahead to demand, or check out the land node tutorial
Data inputs are a single dictionary
land_inputs = data_input_dict["oxford_land"]
print(land_inputs[("precipitation", pd.to_datetime("2010-11-20"))])
print(land_inputs[("et0", pd.to_datetime("2010-11-20"))])
print(land_inputs[("temperature", pd.to_datetime("2009-10-15"))])
0.0003 0.002 13.107142857142858
Assign some default pollutant deposition values (kg/m2/d)
pollutant_deposition = {
"boron": 100e-10,
"calcium": 70e-7,
"chloride": 60e-10,
"fluoride": 0.2e-7,
"magnesium": 6e-7,
"nitrate": 2e-9,
"nitrogen": 4e-7,
"potassium": 7e-7,
"silicon": 7e-9,
"sodium": 30e-9,
"sulphate": 70e-7,
}
Create two surfaces as a list of dicts
surface = [
{
"type_": "PerviousSurface",
"area": 2e7,
"pollutant_load": pollutant_deposition,
"surface": "rural",
"field_capacity": 0.3,
"depth": 0.5,
"initial_storage": 2e7 * 0.4 * 0.5,
},
{
"type_": "ImperviousSurface",
"area": 1e7,
"pollutant_load": pollutant_deposition,
"surface": "urban",
"initial_storage": 5e6,
},
]
Create the land node from these surfaces and the input data
oxford_land = Land(surfaces=surface, name="oxford_land", data_input_dict=land_inputs)
We can see the land node has various tanks that have been initialised empty
print(oxford_land.surface_runoff.storage)
print(oxford_land.subsurface_runoff.storage)
print(oxford_land.percolation.storage)
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
We can see the surfaces have also been initialised, although they are not empty because we provided 'initial_storage' parameters.
rural_surface = oxford_land.get_surface("rural")
urban_surface = oxford_land.get_surface("urban")
print("{0}-{1}".format("rural", rural_surface.storage))
print("{0}-{1}".format("urban", urban_surface.storage))
rural-{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 4000000.0} urban-{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 5000000.0}
We can run a timestep of the land node with the 'run' command
oxford_land.t = pd.to_datetime("2012-12-22")
oxford_land.run()
We can see that the land and surface tanks have been updated
print(oxford_land.surface_runoff.storage)
print(oxford_land.subsurface_runoff.storage)
print(oxford_land.percolation.storage)
print("{0}-{1}".format("rural", rural_surface.storage))
print("{0}-{1}".format("urban", urban_surface.storage))
{'temperature': 3.521534008631931, 'silicon': 0.00020062235262918442, 'fluoride': 0.0005732067217976697, 'chloride': 0.0001719620165393009, 'nitrate': 5.732067217976698e-05, 'sulphate': 0.20062235262918443, 'nitrogen': 0.011464134435953396, 'sodium': 0.0008598100826965045, 'potassium': 0.020062235262918445, 'calcium': 0.20062235262918443, 'magnesium': 0.017196201653930095, 'boron': 0.00028660336089883487, 'volume': 12400.000000000002} {'temperature': 0.9722493642718524, 'silicon': 0.0017554455855053634, 'fluoride': 0.0050155588157296096, 'chloride': 0.0015046676447188828, 'nitrate': 0.000501555881572961, 'sulphate': 1.7554455855053634, 'nitrogen': 0.1003111763145922, 'sodium': 0.007523338223594414, 'potassium': 0.17554455855053633, 'calcium': 1.7554455855053634, 'magnesium': 0.1504667644718883, 'boron': 0.0025077794078648048, 'volume': 58900.0} {'temperature': 0.3349282031818326, 'silicon': 0.005868203814403644, 'fluoride': 0.016766296612581843, 'chloride': 0.005029888983774552, 'nitrate': 0.001676629661258184, 'sulphate': 5.868203814403645, 'nitrogen': 0.3353259322516368, 'sodium': 0.02514944491887276, 'potassium': 0.5868203814403645, 'calcium': 5.868203814403645, 'magnesium': 0.5029888983774553, 'boron': 0.008383148306290921, 'volume': 176700.00000000003} rural-{'temperature': 6.203473168254872, 'silicon': 0.1321757282474618, 'fluoride': 0.3776449378498909, 'chloride': 0.11329348135496725, 'nitrate': 0.037764493784989084, 'sulphate': 132.17572824746182, 'nitrogen': 7.552898756997817, 'sodium': 0.5664674067748363, 'potassium': 13.21757282474618, 'calcium': 132.17572824746182, 'magnesium': 11.329348135496726, 'boron': 0.18882246892494545, 'volume': 3980000.0} urban-{'temperature': 0.13343969249141666, 'silicon': 0.06999999999999999, 'fluoride': 0.2, 'chloride': 0.06, 'nitrate': 0.02, 'sulphate': 70.0, 'nitrogen': 4.0, 'sodium': 0.3, 'potassium': 7.0, 'calcium': 70.0, 'magnesium': 6.0, 'boron': 0.1, 'volume': 5104000.0}
Residential demand¶
The residential demand node requires population, per capita demand and a pollutant_load dictionary that defines how much (weight in kg) pollution is generated per person per day.
oxford = ResidentialDemand(
name="oxford",
population=2e5,
per_capita=0.15,
pollutant_load={
"boron": 500 * constants.UG_L_TO_KG_M3 * 0.15,
"calcium": 150 * constants.MG_L_TO_KG_M3 * 0.15,
"chloride": 180 * constants.MG_L_TO_KG_M3 * 0.15,
"fluoride": 0.4 * constants.MG_L_TO_KG_M3 * 0.15,
"magnesium": 30 * constants.MG_L_TO_KG_M3 * 0.15,
"nitrate": 60 * constants.MG_L_TO_KG_M3 * 0.15,
"nitrogen": 50 * constants.MG_L_TO_KG_M3 * 0.15,
"potassium": 30 * constants.MG_L_TO_KG_M3 * 0.15,
"silicon": 20 * constants.MG_L_TO_KG_M3 * 0.15,
"sodium": 200 * constants.MG_L_TO_KG_M3 * 0.15,
"sulphate": 250 * constants.MG_L_TO_KG_M3 * 0.15,
"temperature": 14,
},
data_input_dict=land_inputs,
)
# pollutant_load calculated based on expected effluent at WWTW
Reservoir¶
A reservoir node is used to make abstractions from rivers and supply FWTWs
farmoor = Reservoir(
name="farmoor", capacity=1e7, initial_storage=1e7, area=1.5e6, datum=62
)
distribution = Node(name="oxford_distribution")
Wastewater treatment works¶
Wastewater treatment works (WWTW) are nodes that can store sewage water temporarily in storm tanks, and reduce the pollution amounts in water before releasing them onwards to rivers.
oxford_wwtw = WWTW(
stormwater_storage_capacity=2e4,
stormwater_storage_area=2e4,
treatment_throughput_capacity=5e4,
name="oxford_wwtw",
)
Sewers¶
Sewer nodes enable water to transition between households and WWTWs, and between impervious surfaces and rivers or WWTWs. They use a timearea diagram to represent travel time, which assigns a specified percentage of water to take a specified duration to pass through the sewer node.
combined_sewer = Sewer(
capacity=4e6, pipe_timearea={0: 0.8, 1: 0.15, 2: 0.05}, name="combined_sewer"
)
Groundwater¶
Groundwater nodes implement a simple residence time to determine baseflow
gw = Groundwater(capacity=3.2e9, area=3.2e8, name="gw", residence_time=20)
Create a nodelist¶
To keep all the nodes in one place, we put them into a list
nodelist = [
thames_above_abingdon,
evenlode,
thames,
ray,
cherwell,
oxford,
distribution,
farmoor,
oxford_fwtw,
oxford_wwtw,
combined_sewer,
oxford_land,
gw,
farmoor_abstraction,
evenlode_thames,
cherwell_ray,
cherwell_thames,
thames_mixer,
]
print(nodelist)
[<wsimod.nodes.waste.Waste object at 0x7f85c5ee5a10>, <wsimod.nodes.catchment.Catchment object at 0x7f85c5ed36d0>, <wsimod.nodes.catchment.Catchment object at 0x7f85c5ed35d0>, <wsimod.nodes.catchment.Catchment object at 0x7f85c5ed2810>, <wsimod.nodes.catchment.Catchment object at 0x7f85c5ed1850>, <wsimod.nodes.demand.ResidentialDemand object at 0x7f85c5e71d50>, <wsimod.nodes.nodes.Node object at 0x7f85c5e72910>, <wsimod.nodes.storage.Reservoir object at 0x7f85c5e72b90>, <wsimod.nodes.wtw.FWTW object at 0x7f85c5ecaed0>, <wsimod.nodes.wtw.WWTW object at 0x7f85c5e5ffd0>, <wsimod.nodes.sewer.Sewer object at 0x7f85c65867d0>, <wsimod.nodes.land.Land object at 0x7f85c5ebd810>, <wsimod.nodes.storage.Groundwater object at 0x7f85c658c290>, <wsimod.nodes.nodes.Node object at 0x7f85c5ee4f50>, <wsimod.nodes.nodes.Node object at 0x7f85c5ee4250>, <wsimod.nodes.nodes.Node object at 0x7f85c5edea10>, <wsimod.nodes.nodes.Node object at 0x7f85c5eddc90>, <wsimod.nodes.nodes.Node object at 0x7f85c5edced0>]
# Standard simple arcs
fwtw_to_distribution = Arc(
in_port=oxford_fwtw, out_port=distribution, name="fwtw_to_distribution"
)
print(fwtw_to_distribution)
<wsimod.arcs.arcs.Arc object at 0x7f85c6215410>
As with nodes, even though we only gave it a few parameters, the arc comes with a lot built in
print(dir(fwtw_to_distribution))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'apply_overrides', 'arc_mass_balance', 'blend_vqip', 'capacity', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'extract_vqip', 'extract_vqip_c', 'flow_in', 'flow_out', 'get_excess', 'in_port', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'out_port', 'preference', 'reinit', 'send_pull_check', 'send_pull_request', 'send_push_check', 'send_push_request', 'sum_vqip', 'total_to_concentration', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c', 'vqip_in', 'vqip_out']
We can see that the arc links the two nodes
print(fwtw_to_distribution.in_port)
<wsimod.nodes.wtw.FWTW object at 0x7f85c5ecaed0>
print(fwtw_to_distribution.out_port)
<wsimod.nodes.nodes.Node object at 0x7f85c5e72910>
And that it has updated the nodes that it is connecting.
print(oxford_fwtw.out_arcs)
{'fwtw_to_distribution': <wsimod.arcs.arcs.Arc object at 0x7f85c6215410>}
print(distribution.in_arcs)
{'fwtw_to_distribution': <wsimod.arcs.arcs.Arc object at 0x7f85c6215410>}
We use arcs to send checks and requests..
print(fwtw_to_distribution.send_pull_check({"volume": 20}))
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
reply = fwtw_to_distribution.send_pull_request({"volume": 20})
print(reply)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
They convey this information to the nodes that they connect to, which update their state variables
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 0.0}
In turn, the arcs update their own state variables.
print(fwtw_to_distribution.flow_in)
print(fwtw_to_distribution.flow_out)
15.0 15.0
Arc parameters¶
Besides the in/out ports and names, arcs can have a parameter for their capacity, to limit the flow that may pass through it each timestep. A typical example would be on river abstractions to a reservoir
abstraction_to_farmoor = Arc(
in_port=farmoor_abstraction,
out_port=farmoor,
name="abstraction_to_farmoor",
capacity=5e4,
)
A bit more sophisticated is the 'preference' parameter. We use preference to express where we would prefer the model to send water. In this example, the sewer can send water to both the treatment plant and directly into the river. Of course we would always to prefer to send water to the plant, so we give it a very high preference. Discharging into the river should only be done if there is no capacity left at the WWTW, so we give the arc a very low preference.
sewer_to_wwtw = Arc(
in_port=combined_sewer, out_port=oxford_wwtw, preference=1e10, name="sewer_to_wwtw"
)
sewer_overflow = Arc(
in_port=combined_sewer,
out_port=thames_mixer,
preference=1e-10,
name="sewer_overflow",
)
Create arcs¶
Arcs are a bit less interesting than nodes because they generally don't capture complicated physical behaviours. So we just create all of them below.
evenlode_to_thames = Arc(
in_port=evenlode, out_port=evenlode_thames, name="evenlode_to_thames"
)
thames_to_thames = Arc(
in_port=thames, out_port=evenlode_thames, name="thames_to_thames"
)
ray_to_cherwell = Arc(in_port=ray, out_port=cherwell_ray, name="ray_to_cherwell")
cherwell_to_cherwell = Arc(
in_port=cherwell, out_port=cherwell_ray, name="cherwell_to_cherwell"
)
thames_to_farmoor = Arc(
in_port=evenlode_thames, out_port=farmoor_abstraction, name="thames_to_farmoor"
)
farmoor_to_mixer = Arc(
in_port=farmoor_abstraction, out_port=thames_mixer, name="farmoor_to_mixer"
)
cherwell_to_mixer = Arc(
in_port=cherwell_ray, out_port=thames_mixer, name="cherwell_to_mixer"
)
wwtw_to_mixer = Arc(in_port=oxford_wwtw, out_port=thames_mixer, name="wwtw_to_mixer")
mixer_to_waste = Arc(
in_port=thames_mixer, out_port=thames_above_abingdon, name="mixer_to_waste"
)
distribution_to_demand = Arc(
in_port=distribution, out_port=oxford, name="distribution_to_demand"
)
reservoir_to_fwtw = Arc(in_port=farmoor, out_port=oxford_fwtw, name="reservoir_to_fwtw")
fwtw_to_sewer = Arc(in_port=oxford_fwtw, out_port=combined_sewer, name="fwtw_to_sewer")
demand_to_sewer = Arc(in_port=oxford, out_port=combined_sewer, name="demand_to_sewer")
land_to_sewer = Arc(in_port=oxford_land, out_port=combined_sewer, name="land_to_sewer")
land_to_gw = Arc(in_port=oxford_land, out_port=gw, name="land_to_gw")
garden_to_gw = Arc(in_port=oxford, out_port=gw, name="garden_to_gw")
gw_to_mixer = Arc(in_port=gw, out_port=thames_mixer, name="gw_to_mixer")
Again, we keep all the arcs in a tidy list together.
arclist = [
evenlode_to_thames,
thames_to_thames,
ray_to_cherwell,
cherwell_to_cherwell,
thames_to_farmoor,
farmoor_to_mixer,
cherwell_to_mixer,
wwtw_to_mixer,
sewer_overflow,
mixer_to_waste,
abstraction_to_farmoor,
distribution_to_demand,
demand_to_sewer,
land_to_sewer,
sewer_to_wwtw,
fwtw_to_sewer,
fwtw_to_distribution,
reservoir_to_fwtw,
land_to_gw,
garden_to_gw,
gw_to_mixer,
]
Mapping¶
Remember, WSIMOD is an integrated model. Because it covers so many different things, it is very easy to make mistakes. Thus it is always good practice to plot your data!
Below we load the node location data and create arcs from the information in the arclist.
location_fn = os.path.join(data_folder, "raw", "points_locations.geojson")
nodes_gdf = gpd.read_file(location_fn).set_index("name")
arcs_gdf = []
for arc in arclist:
arcs_gdf.append(
{
"name": arc.name,
"geometry": LineString(
[
nodes_gdf.loc[arc.in_port.name, "geometry"],
nodes_gdf.loc[arc.out_port.name, "geometry"],
]
),
}
)
arcs_gdf = gpd.GeoDataFrame(arcs_gdf, crs=nodes_gdf.crs)
Because we converted the information as GeoDataFrames, we can simply plot them below
f, ax = plt.subplots()
arcs_gdf.plot(ax=ax)
nodes_gdf.plot(color="r", ax=ax, zorder=10)
<Axes: >
Orchestration¶
Orchestration is making the simulation happen by calling functions in the nodes. These functions simulate physical behaviour within the node, and cause pulls/pushes to happen which in turn triggers physical behaviour in other nodes.
Orchestrating an individual timestep¶
We will start below by manually orchestrating a single timestep.
We start by setting the date, so that every node knows what forcing data to read for this timestep.
date = dates[0]
for node in nodelist:
node.t = date
print(date)
print(oxford_fwtw.t)
2009-03-03 00:00:00 2009-03-03 00:00:00
We can see the service reservoirs are empty but the supply reservoir is not!
print(oxford_fwtw.service_reservoir_tank.storage)
print(farmoor.tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 0.0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 10000000.0}
If we call the FWTW's treat_water function it will pull water from the supply reservoir and update its service reservoirs
oxford_fwtw.treat_water()
print(oxford_fwtw.service_reservoir_tank.storage)
print(farmoor.tank.storage)
{'temperature': 0.0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 43641.0} {'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 9955000.0}
This information is tracked in the arcs that enter the FWTW
print(oxford_fwtw.in_arcs)
{'reservoir_to_fwtw': <wsimod.arcs.arcs.Arc object at 0x7f85c658ed10>}
print(reservoir_to_fwtw.flow_in)
print(reservoir_to_fwtw.flow_out)
45000.0 45000.0
Although none of that water has yet entered the distribution network (only some small flow from the earlier demonstration)
print(fwtw_to_distribution.flow_in)
15.0
That is because no water consumption demand had yet been generated.
If we call the demand node's create_demand function we see that the distribution arc becomes utilised.
oxford.create_demand()
print(fwtw_to_distribution.flow_in)
30015.0
We also see that this gets pushed onwards into the sewer system
print(demand_to_sewer.flow_in)
30000.0
Many nodes have functions intended to be called during orchestration. These functions are described in the documentation. For example, we see in the Land node API reference that the 'run' function is intended to be called from orchestration.
oxford_land.run()
Below we call the functions for other nodes
# Discharge GW
gw.distribute()
# Discharge sewers (pushed to other sewers or WWTW)
combined_sewer.make_discharge()
# Run WWTW model
oxford_wwtw.calculate_discharge()
# Make abstractions
farmoor.make_abstractions()
# Discharge WW
oxford_wwtw.make_discharge()
# Route catchments
evenlode.route()
thames.route()
ray.route()
cherwell.route()
Ending a timestep¶
Because mistakes happen, it is essential to carry out mass balance testing. Each node has a mass balance function that can be called. We see a mass balance violation resulting from the demonstration with the FWTW earlier.
for node in nodelist:
in_, ds_, out_ = node.node_mass_balance()
mass balance error for volume of 15.0 in oxford_distribution mass balance error for volume of -15.0 in oxford_fwtw
We should also call the end_timestep function in nodes and arcs. This is important for mass balance testing and capturing the behaviour of some dynamic processes in nodes.
for node in nodelist:
node.end_timestep()
for arc in arclist:
arc.end_timestep()
Model object¶
Of course it would be a massive pain to manually orchestrate every timestep. So instead we store node and arc information in a model object that will do the orchestration for us.
Because we have already created the nodes/arcs above, we simply need to add the instantiated lists above.
my_model = Model()
my_model.add_instantiated_nodes(nodelist)
my_model.add_instantiated_arcs(arclist)
my_model.dates = dates
The model object lets us reinitialise the nodes/arcs, and run all of the orchestration with a 'run' function.
my_model.reinit()
flows, _, _, _ = my_model.run()
0%| | 0/1456 [00:00<?, ?it/s]
2%|▏ | 34/1456 [00:00<00:04, 335.60it/s]
5%|▍ | 68/1456 [00:00<00:04, 335.84it/s]
7%|▋ | 102/1456 [00:00<00:04, 332.35it/s]
9%|▉ | 136/1456 [00:00<00:03, 334.61it/s]
12%|█▏ | 170/1456 [00:00<00:03, 333.88it/s]
14%|█▍ | 204/1456 [00:00<00:03, 333.57it/s]
16%|█▋ | 238/1456 [00:00<00:03, 332.84it/s]
19%|█▊ | 272/1456 [00:00<00:03, 328.68it/s]
21%|██ | 306/1456 [00:00<00:03, 329.21it/s]
23%|██▎ | 339/1456 [00:01<00:03, 329.27it/s]
26%|██▌ | 372/1456 [00:01<00:03, 329.27it/s]
28%|██▊ | 405/1456 [00:01<00:03, 328.72it/s]
30%|███ | 439/1456 [00:01<00:03, 329.65it/s]
32%|███▏ | 472/1456 [00:01<00:02, 329.74it/s]
35%|███▍ | 506/1456 [00:01<00:02, 330.72it/s]
37%|███▋ | 540/1456 [00:01<00:02, 328.72it/s]
39%|███▉ | 574/1456 [00:01<00:02, 329.39it/s]
42%|████▏ | 608/1456 [00:01<00:02, 329.89it/s]
44%|████▍ | 641/1456 [00:01<00:02, 329.84it/s]
46%|████▋ | 675/1456 [00:02<00:02, 330.41it/s]
49%|████▊ | 709/1456 [00:02<00:02, 329.67it/s]
51%|█████ | 742/1456 [00:02<00:02, 329.56it/s]
53%|█████▎ | 775/1456 [00:02<00:02, 329.23it/s]
55%|█████▌ | 808/1456 [00:02<00:01, 328.11it/s]
58%|█████▊ | 841/1456 [00:02<00:01, 328.65it/s]
60%|██████ | 874/1456 [00:02<00:01, 328.62it/s]
62%|██████▏ | 908/1456 [00:02<00:01, 329.27it/s]
65%|██████▍ | 942/1456 [00:02<00:01, 329.79it/s]
67%|██████▋ | 976/1456 [00:02<00:01, 330.46it/s]
69%|██████▉ | 1010/1456 [00:03<00:01, 330.93it/s]
72%|███████▏ | 1044/1456 [00:03<00:01, 329.39it/s]
74%|███████▍ | 1077/1456 [00:03<00:01, 328.21it/s]
76%|███████▌ | 1110/1456 [00:03<00:01, 327.15it/s]
79%|███████▊ | 1144/1456 [00:03<00:00, 328.10it/s]
81%|████████ | 1177/1456 [00:03<00:00, 327.78it/s]
83%|████████▎ | 1210/1456 [00:03<00:00, 327.74it/s]
85%|████████▌ | 1243/1456 [00:03<00:00, 327.82it/s]
88%|████████▊ | 1276/1456 [00:03<00:00, 327.79it/s]
90%|████████▉ | 1310/1456 [00:03<00:00, 328.97it/s]
92%|█████████▏| 1343/1456 [00:04<00:00, 326.82it/s]
95%|█████████▍| 1376/1456 [00:04<00:00, 327.54it/s]
97%|█████████▋| 1409/1456 [00:04<00:00, 327.01it/s]
99%|█████████▉| 1442/1456 [00:04<00:00, 327.04it/s]
100%|██████████| 1456/1456 [00:04<00:00, 329.31it/s]
The model outputs flows as a dictionary which can be converted to a dataframe
flows = pd.DataFrame(flows)
print(flows.sample(10))
arc flow time temperature \ 14804 gw_to_mixer 9962.619356 2011-02-05 8.842734 29684 distribution_to_demand 30000.000000 2013-01-14 10.981650 23629 thames_to_farmoor 499392.000000 2012-04-01 11.119822 12441 mixer_to_waste 551779.132154 2010-10-16 11.642158 3964 fwtw_to_distribution 30000.000000 2009-09-07 7.086445 27929 gw_to_mixer 28198.367226 2012-10-22 13.178160 30127 land_to_sewer 0.000000 2013-02-04 0.000000 22550 reservoir_to_fwtw 30934.213240 2012-02-09 10.790209 10748 reservoir_to_fwtw 30934.213240 2010-07-27 10.282667 12156 land_to_gw 18387.106974 2010-10-02 14.353861 silicon fluoride chloride nitrate sulphate \ 14804 0.090084 0.257382 0.077215 0.025738 90.083596 29684 2.009045 0.041834 9.286433 1.748716 14.224264 23629 525.012192 66.748937 17837.470080 2700.024519 28560.408686 12441 4165.754591 88.927764 20853.981290 2918.989808 30592.891463 3964 0.729897 0.018252 4.605352 0.747359 6.490232 27929 0.159771 0.456488 0.136946 0.045649 159.770708 30127 0.000000 0.000000 0.000000 0.000000 0.000000 22550 190.982542 4.136400 1158.995759 170.814055 1691.804214 10748 144.287270 3.162487 742.101520 146.725914 1139.780090 12156 0.157380 0.449658 0.134898 0.044966 157.380434 nitrogen sodium potassium calcium magnesium \ 14804 5.147634 0.386073 9.008360 90.083596 7.721451 29684 1.892480 5.907127 1.265702 31.677048 1.429036 23629 2755.005943 11171.211429 2135.622857 51139.382400 2511.857829 12441 3001.439846 13677.642542 2869.421236 50826.417091 2808.494594 3964 0.780465 2.963568 0.598848 14.010095 0.678831 27929 9.129755 0.684732 15.977071 159.770708 13.694632 30127 0.000000 0.000000 0.000000 0.000000 0.000000 22550 185.332987 781.018656 155.110589 3032.347802 149.880913 10748 152.887695 460.785335 94.720714 2483.624695 115.381934 12156 8.993168 0.674488 15.738043 157.380434 13.489751 boron 14804 0.128691 29684 0.013883 23629 23.589014 12441 32.629925 3964 0.007544 27929 0.228244 30127 0.000000 22550 1.567645 10748 1.151882 12156 0.224829
Validation plots¶
Of course we shouldn't trust a model without proof, and this is doubly true for an integrated model whose errors may easily propagate.
Thankfully we have rich in-river water quality sampling in Oxford that we can use for validation
We load and format this data for dates and pollutants that overlap with what we have simulated
mixer_val_df = pd.read_csv(os.path.join(data_folder, "raw", "mixer_wims_val.csv"))
mixer_val_df.date = pd.to_datetime(mixer_val_df.date)
mixer_val_df = mixer_val_df.loc[mixer_val_df.date.isin(dates)]
val_pollutants = mixer_val_df.variable.unique()
mixer_val_df = mixer_val_df.pivot(index="date", columns="variable", values="value")
We get rid of the first day of flows because our tanks were initialised empty and will not be informative
flows = flows.loc[flows.time != dates[0]]
We convert our flows, which are simulated in kg/d into a concentration value (kg/m3/d).
flows_plot = flows.copy()
# Convert to KG/M3
for pol in set(val_pollutants):
if pol != "temperature":
flows_plot[pol] /= flows_plot.flow
We pick the model outlet as a validation location and make a pretty plot - fantastic!
plot_arc = "mixer_to_waste"
f, axs = plt.subplots(val_pollutants.size, 1)
for pol, ax in zip(val_pollutants, axs):
ax.plot(
flows_plot.loc[flows_plot.arc == plot_arc, [pol, "time"]].set_index("time"),
color="b",
label="simulation",
)
ax.plot(mixer_val_df[pol], ls="", marker="o", color="r", label="spot sample")
ax.set_ylabel(pol)
plt.legend()
<matplotlib.legend.Legend at 0x7f85c6542350>