WSIMOD model demonstration - Oxford (.py)¶
Note - this script can also be opened in interactive Python if you wanted to play around. On the GitHub it is in docs/demo/scripts
-
3.1 Freshwater Treatment Works
3.2 Land
3.3 Demand
3.4 Reservoir
3.5 Distribution
3.6 Wastewater Treatment Works
3.7 Sewers
3.8 Groundwater
3.9 Node list
-
4.1 Arc parameters
4.2 Create the arcs
-
7.1 Validation
We will cover a demo WSIMOD case study¶
The glamorous town of Oxford will be our demo case study. Below, we will create these nodes and arcs, orchestrate them into a model, and run simulations.
Although GIS is pretty, the schematic below is a more accurate representation of what will be created. WSIMOD treats everything as a node or an arc.
Imports and forcing data¶
Import packages
import os
import pandas as pd
from wsimod.arcs.arcs import Arc
from wsimod.core import constants
from wsimod.nodes.catchment import Catchment
from wsimod.nodes.demand import ResidentialDemand
from wsimod.nodes.land import Land
from wsimod.nodes.nodes import Node
from wsimod.nodes.sewer import Sewer
from wsimod.nodes.storage import Groundwater, Reservoir
from wsimod.nodes.waste import Waste
from wsimod.nodes.wtw import FWTW, WWTW
from wsimod.orchestration.model import Model
os.environ["USE_PYGEOS"] = "0"
import geopandas as gpd
from matplotlib import pyplot as plt
from shapely.geometry import LineString
Load input data
# Select the root path for the data folder. Use the appropriate value for your case.
data_folder = os.path.join(os.path.abspath(""), "docs", "demo", "data")
input_fid = os.path.join(data_folder, "processed", "timeseries_data.csv")
input_data = pd.read_csv(input_fid)
input_data.loc[input_data.variable == "flow", "value"] *= constants.M3_S_TO_M3_DT
input_data.loc[input_data.variable == "precipitation", "value"] *= constants.MM_TO_M
input_data.date = pd.to_datetime(input_data.date)
data_input_dict = input_data.set_index(["variable", "date"]).value.to_dict()
data_input_dict = (
input_data.groupby("site")
.apply(lambda x: x.set_index(["variable", "date"]).value.to_dict())
.to_dict()
)
print(input_data.sample(10))
site date variable value 58304 cherwell 2009-05-06 magnesium 0.008950 47200 cherwell 2010-11-01 potassium 0.006571 2630 evenlode 2012-05-20 temperature 12.700000 11285 thames 2012-02-29 silicon 0.002878 43542 evenlode 2012-10-11 sodium 0.010512 45967 thames 2011-06-12 sodium 0.031786 50259 ray 2011-03-28 potassium 0.008143 71144 cherwell 2012-08-10 flow 201312.000000 71246 cherwell 2012-11-20 flow 279072.000000 52032 thames 2012-02-08 potassium 0.004900
/tmp/ipykernel_2096/946595242.py:12: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning. .apply(lambda x: x.set_index(["variable", "date"]).value.to_dict())
Input data is stored in dicts
print(data_input_dict["cherwell"][("boron", pd.to_datetime("2010-11-20"))])
6.985714285714286e-05
We select dates that are available in the input data
dates = input_data.date.unique()
dates = dates[dates.argsort()]
dates = [pd.Timestamp(x) for x in dates]
print(dates[0:10])
[Timestamp('2009-03-03 00:00:00'), Timestamp('2009-03-04 00:00:00'), Timestamp('2009-03-05 00:00:00'), Timestamp('2009-03-06 00:00:00'), Timestamp('2009-03-07 00:00:00'), Timestamp('2009-03-08 00:00:00'), Timestamp('2009-03-09 00:00:00'), Timestamp('2009-03-10 00:00:00'), Timestamp('2009-03-11 00:00:00'), Timestamp('2009-03-12 00:00:00')]
We can specify the pollutants. In this example we choose based on what pollutants we have input data for.
constants.POLLUTANTS = input_data.variable.unique().tolist()
constants.POLLUTANTS.remove("flow")
constants.POLLUTANTS.remove("precipitation")
constants.POLLUTANTS.remove("et0")
constants.NON_ADDITIVE_POLLUTANTS = ["temperature"]
constants.ADDITIVE_POLLUTANTS = list(
set(constants.POLLUTANTS).difference(constants.NON_ADDITIVE_POLLUTANTS)
)
constants.FLOAT_ACCURACY = 1e-11
print(constants.POLLUTANTS)
['temperature', 'silicon', 'fluoride', 'chloride', 'nitrate', 'sulphate', 'nitrogen', 'sodium', 'potassium', 'calcium', 'magnesium', 'boron']
Create nodes¶
For waste nodes, no parameters are needed, they are just the model outlet
thames_above_abingdon = Waste(name="thames_above_abingdon")
For junctions and abstraction locations, we can simply use the default nodes
farmoor_abstraction = Node(name="farmoor_abstraction")
evenlode_thames = Node(name="evenlode_thames")
cherwell_ray = Node(name="cherwell_ray")
cherwell_thames = Node(name="cherwell_thames")
thames_mixer = Node(name="thames_mixer")
For catchment nodes, we only need to specify the input data (as a dictionary format).
evenlode = Catchment(name="evenlode", data_input_dict=data_input_dict["evenlode"])
thames = Catchment(name="thames", data_input_dict=data_input_dict["thames"])
ray = Catchment(name="ray", data_input_dict=data_input_dict["ray"])
cherwell = Catchment(name="cherwell", data_input_dict=data_input_dict["cherwell"])
We can see that, even though we provided mimimal information (name and input data) each node comes with many predefined functions.
print(dir(evenlode))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'apply_overrides', 'blend_vqip', 'check_basic', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'data_input_dict', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'end_timestep_', 'extract_vqip', 'extract_vqip_c', 'get_avail', 'get_connected', 'get_data_input', 'get_direction_arcs', 'get_flow', 'in_arcs', 'in_arcs_type', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'node_mass_balance', 'out_arcs', 'out_arcs_type', 'pull_check', 'pull_check_abstraction', 'pull_check_basic', 'pull_check_deny', 'pull_check_handler', 'pull_distributed', 'pull_set', 'pull_set_abstraction', 'pull_set_deny', 'pull_set_handler', 'push_check', 'push_check_accept', 'push_check_basic', 'push_check_deny', 'push_check_handler', 'push_distributed', 'push_set', 'push_set_deny', 'push_set_handler', 'query_handler', 'reinit', 'route', 'sum_vqip', 't', 'total_in', 'total_out', 'total_to_concentration', 'unrouted_water', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c']
Freshwater treatment works¶
Each type of node uses different parameters (see API reference). Below we create a freshwater treatment works (FWTW)
oxford_fwtw = FWTW(
service_reservoir_storage_capacity=1e5,
service_reservoir_storage_area=2e4,
treatment_throughput_capacity=4.5e4,
name="oxford_fwtw",
)
Each node type has different types of functionality available
print(dir(oxford_fwtw))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_liquor_multiplier', '_percent_solids', 'apply_overrides', 'blend_vqip', 'calculate_volume', 'check_basic', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'current_input', 'data_input_dict', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'end_timestep_', 'extract_vqip', 'extract_vqip_c', 'get_connected', 'get_data_input', 'get_direction_arcs', 'get_excess_throughput', 'in_arcs', 'in_arcs_type', 'liquor', 'liquor_multiplier', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'node_mass_balance', 'out_arcs', 'out_arcs_type', 'percent_solids', 'previous_pulled', 'process_parameters', 'pull_check', 'pull_check_basic', 'pull_check_deny', 'pull_check_fwtw', 'pull_check_handler', 'pull_distributed', 'pull_set', 'pull_set_deny', 'pull_set_fwtw', 'pull_set_handler', 'push_check', 'push_check_accept', 'push_check_basic', 'push_check_deny', 'push_check_handler', 'push_distributed', 'push_set', 'push_set_deny', 'push_set_handler', 'query_handler', 'reinit', 'service_reservoir_initial_storage', 'service_reservoir_storage_area', 'service_reservoir_storage_capacity', 'service_reservoir_storage_elevation', 'service_reservoir_tank', 'solids', 'sum_vqip', 't', 'total_deficit', 'total_in', 'total_out', 'total_pulled', 'total_to_concentration', 'treat_current_input', 'treat_water', 'treated', 'treatment_throughput_capacity', 'unpushed_sludge', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c']
The FWTW node has a tank representing the service reservoirs, we can see that it has been initialised empty.
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
If we try to pull water from the FWTW, it responds that there is no water to pull.
print(oxford_fwtw.pull_check({"volume": 10}))
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
If we add in some water, we see the pull check responds that water is available.
oxford_fwtw.service_reservoir_tank.storage["volume"] += 25
print(oxford_fwtw.pull_check({"volume": 10}))
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 10.0}
When we set a pull request, we see that we successfully receive the water and the tank is updated.
reply = oxford_fwtw.pull_set({"volume": 10})
print(reply)
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 10.0} {'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
Land¶
We will now create a land node, it is a bit involved so you might want to skip ahead to demand, or check out the land node tutorial
Data inputs are a single dictionary
land_inputs = data_input_dict["oxford_land"]
print(land_inputs[("precipitation", pd.to_datetime("2010-11-20"))])
print(land_inputs[("et0", pd.to_datetime("2010-11-20"))])
print(land_inputs[("temperature", pd.to_datetime("2009-10-15"))])
0.0003 0.002 13.107142857142858
Assign some default pollutant deposition values (kg/m2/d)
pollutant_deposition = {
"boron": 100e-10,
"calcium": 70e-7,
"chloride": 60e-10,
"fluoride": 0.2e-7,
"magnesium": 6e-7,
"nitrate": 2e-9,
"nitrogen": 4e-7,
"potassium": 7e-7,
"silicon": 7e-9,
"sodium": 30e-9,
"sulphate": 70e-7,
}
Create two surfaces as a list of dicts
surface = [
{
"type_": "PerviousSurface",
"area": 2e7,
"pollutant_load": pollutant_deposition,
"surface": "rural",
"field_capacity": 0.3,
"depth": 0.5,
"initial_storage": 2e7 * 0.4 * 0.5,
},
{
"type_": "ImperviousSurface",
"area": 1e7,
"pollutant_load": pollutant_deposition,
"surface": "urban",
"initial_storage": 5e6,
},
]
Create the land node from these surfaces and the input data
oxford_land = Land(surfaces=surface, name="oxford_land", data_input_dict=land_inputs)
We can see the land node has various tanks that have been initialised empty
print(oxford_land.surface_runoff.storage)
print(oxford_land.subsurface_runoff.storage)
print(oxford_land.percolation.storage)
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
We can see the surfaces have also been initialised, although they are not empty because we provided 'initial_storage' parameters.
rural_surface = oxford_land.get_surface("rural")
urban_surface = oxford_land.get_surface("urban")
print("{0}-{1}".format("rural", rural_surface.storage))
print("{0}-{1}".format("urban", urban_surface.storage))
rural-{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 4000000.0} urban-{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 5000000.0}
We can run a timestep of the land node with the 'run' command
oxford_land.t = pd.to_datetime("2012-12-22")
oxford_land.run()
We can see that the land and surface tanks have been updated
print(oxford_land.surface_runoff.storage)
print(oxford_land.subsurface_runoff.storage)
print(oxford_land.percolation.storage)
print("{0}-{1}".format("rural", rural_surface.storage))
print("{0}-{1}".format("urban", urban_surface.storage))
{'temperature': 3.521534008631931, 'silicon': 0.00020062235262918442, 'fluoride': 0.0005732067217976697, 'chloride': 0.0001719620165393009, 'nitrate': 5.732067217976698e-05, 'sulphate': 0.20062235262918443, 'nitrogen': 0.011464134435953396, 'sodium': 0.0008598100826965045, 'potassium': 0.020062235262918445, 'calcium': 0.20062235262918443, 'magnesium': 0.017196201653930095, 'boron': 0.00028660336089883487, 'volume': 12400.000000000002} {'temperature': 0.9722493642718524, 'silicon': 0.0017554455855053634, 'fluoride': 0.0050155588157296096, 'chloride': 0.0015046676447188828, 'nitrate': 0.000501555881572961, 'sulphate': 1.7554455855053634, 'nitrogen': 0.1003111763145922, 'sodium': 0.007523338223594414, 'potassium': 0.17554455855053633, 'calcium': 1.7554455855053634, 'magnesium': 0.1504667644718883, 'boron': 0.0025077794078648048, 'volume': 58900.0} {'temperature': 0.3349282031818326, 'silicon': 0.005868203814403644, 'fluoride': 0.016766296612581843, 'chloride': 0.005029888983774552, 'nitrate': 0.001676629661258184, 'sulphate': 5.868203814403645, 'nitrogen': 0.3353259322516368, 'sodium': 0.02514944491887276, 'potassium': 0.5868203814403645, 'calcium': 5.868203814403645, 'magnesium': 0.5029888983774553, 'boron': 0.008383148306290921, 'volume': 176700.00000000003} rural-{'temperature': 6.203473168254872, 'silicon': 0.1321757282474618, 'fluoride': 0.3776449378498909, 'chloride': 0.11329348135496725, 'nitrate': 0.037764493784989084, 'sulphate': 132.17572824746182, 'nitrogen': 7.552898756997817, 'sodium': 0.5664674067748363, 'potassium': 13.21757282474618, 'calcium': 132.17572824746182, 'magnesium': 11.329348135496726, 'boron': 0.18882246892494545, 'volume': 3980000.0} urban-{'temperature': 0.13343969249141666, 'silicon': 0.06999999999999999, 'fluoride': 0.2, 'chloride': 0.06, 'nitrate': 0.02, 'sulphate': 70.0, 'nitrogen': 4.0, 'sodium': 0.3, 'potassium': 7.0, 'calcium': 70.0, 'magnesium': 6.0, 'boron': 0.1, 'volume': 5104000.0}
Residential demand¶
The residential demand node requires population, per capita demand and a pollutant_load dictionary that defines how much (weight in kg) pollution is generated per person per day.
oxford = ResidentialDemand(
name="oxford",
population=2e5,
per_capita=0.15,
pollutant_load={
"boron": 500 * constants.UG_L_TO_KG_M3 * 0.15,
"calcium": 150 * constants.MG_L_TO_KG_M3 * 0.15,
"chloride": 180 * constants.MG_L_TO_KG_M3 * 0.15,
"fluoride": 0.4 * constants.MG_L_TO_KG_M3 * 0.15,
"magnesium": 30 * constants.MG_L_TO_KG_M3 * 0.15,
"nitrate": 60 * constants.MG_L_TO_KG_M3 * 0.15,
"nitrogen": 50 * constants.MG_L_TO_KG_M3 * 0.15,
"potassium": 30 * constants.MG_L_TO_KG_M3 * 0.15,
"silicon": 20 * constants.MG_L_TO_KG_M3 * 0.15,
"sodium": 200 * constants.MG_L_TO_KG_M3 * 0.15,
"sulphate": 250 * constants.MG_L_TO_KG_M3 * 0.15,
"temperature": 14,
},
data_input_dict=land_inputs,
)
# pollutant_load calculated based on expected effluent at WWTW
Reservoir¶
A reservoir node is used to make abstractions from rivers and supply FWTWs
farmoor = Reservoir(
name="farmoor", capacity=1e7, initial_storage=1e7, area=1.5e6, datum=62
)
distribution = Node(name="oxford_distribution")
Wastewater treatment works¶
Wastewater treatment works (WWTW) are nodes that can store sewage water temporarily in storm tanks, and reduce the pollution amounts in water before releasing them onwards to rivers.
oxford_wwtw = WWTW(
stormwater_storage_capacity=2e4,
stormwater_storage_area=2e4,
treatment_throughput_capacity=5e4,
name="oxford_wwtw",
)
Sewers¶
Sewer nodes enable water to transition between households and WWTWs, and between impervious surfaces and rivers or WWTWs. They use a timearea diagram to represent travel time, which assigns a specified percentage of water to take a specified duration to pass through the sewer node.
combined_sewer = Sewer(
capacity=4e6, pipe_timearea={0: 0.8, 1: 0.15, 2: 0.05}, name="combined_sewer"
)
Groundwater¶
Groundwater nodes implement a simple residence time to determine baseflow
gw = Groundwater(capacity=3.2e9, area=3.2e8, name="gw", residence_time=20)
Create a nodelist¶
To keep all the nodes in one place, we put them into a list
nodelist = [
thames_above_abingdon,
evenlode,
thames,
ray,
cherwell,
oxford,
distribution,
farmoor,
oxford_fwtw,
oxford_wwtw,
combined_sewer,
oxford_land,
gw,
farmoor_abstraction,
evenlode_thames,
cherwell_ray,
cherwell_thames,
thames_mixer,
]
print(nodelist)
[<wsimod.nodes.waste.Waste object at 0x7f97577b54d0>, <wsimod.nodes.catchment.Catchment object at 0x7f97577a36d0>, <wsimod.nodes.catchment.Catchment object at 0x7f97577a3590>, <wsimod.nodes.catchment.Catchment object at 0x7f97577a2750>, <wsimod.nodes.catchment.Catchment object at 0x7f97577a1790>, <wsimod.nodes.demand.ResidentialDemand object at 0x7f975778bd90>, <wsimod.nodes.nodes.Node object at 0x7f975773fd50>, <wsimod.nodes.storage.Reservoir object at 0x7f975773df90>, <wsimod.nodes.wtw.FWTW object at 0x7f975804fd90>, <wsimod.nodes.wtw.WWTW object at 0x7f9757732f10>, <wsimod.nodes.sewer.Sewer object at 0x7f97577311d0>, <wsimod.nodes.land.Land object at 0x7f9757744750>, <wsimod.nodes.storage.Groundwater object at 0x7f97578e7110>, <wsimod.nodes.nodes.Node object at 0x7f97577b4890>, <wsimod.nodes.nodes.Node object at 0x7f97577b42d0>, <wsimod.nodes.nodes.Node object at 0x7f97577aa710>, <wsimod.nodes.nodes.Node object at 0x7f97577a9950>, <wsimod.nodes.nodes.Node object at 0x7f97577a8b90>]
# Standard simple arcs
fwtw_to_distribution = Arc(
in_port=oxford_fwtw, out_port=distribution, name="fwtw_to_distribution"
)
print(fwtw_to_distribution)
<wsimod.arcs.arcs.Arc object at 0x7f97578e5610>
As with nodes, even though we only gave it a few parameters, the arc comes with a lot built in
print(dir(fwtw_to_distribution))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'apply_overrides', 'arc_mass_balance', 'blend_vqip', 'capacity', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'extract_vqip', 'extract_vqip_c', 'flow_in', 'flow_out', 'get_excess', 'in_port', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'out_port', 'preference', 'reinit', 'send_pull_check', 'send_pull_request', 'send_push_check', 'send_push_request', 'sum_vqip', 'total_to_concentration', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c', 'vqip_in', 'vqip_out']
We can see that the arc links the two nodes
print(fwtw_to_distribution.in_port)
<wsimod.nodes.wtw.FWTW object at 0x7f975804fd90>
print(fwtw_to_distribution.out_port)
<wsimod.nodes.nodes.Node object at 0x7f975773fd50>
And that it has updated the nodes that it is connecting.
print(oxford_fwtw.out_arcs)
{'fwtw_to_distribution': <wsimod.arcs.arcs.Arc object at 0x7f97578e5610>}
print(distribution.in_arcs)
{'fwtw_to_distribution': <wsimod.arcs.arcs.Arc object at 0x7f97578e5610>}
We use arcs to send checks and requests..
print(fwtw_to_distribution.send_pull_check({"volume": 20}))
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
reply = fwtw_to_distribution.send_pull_request({"volume": 20})
print(reply)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
They convey this information to the nodes that they connect to, which update their state variables
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 0.0}
In turn, the arcs update their own state variables.
print(fwtw_to_distribution.flow_in)
print(fwtw_to_distribution.flow_out)
15.0 15.0
Arc parameters¶
Besides the in/out ports and names, arcs can have a parameter for their capacity, to limit the flow that may pass through it each timestep. A typical example would be on river abstractions to a reservoir
abstraction_to_farmoor = Arc(
in_port=farmoor_abstraction,
out_port=farmoor,
name="abstraction_to_farmoor",
capacity=5e4,
)
A bit more sophisticated is the 'preference' parameter. We use preference to express where we would prefer the model to send water. In this example, the sewer can send water to both the treatment plant and directly into the river. Of course we would always to prefer to send water to the plant, so we give it a very high preference. Discharging into the river should only be done if there is no capacity left at the WWTW, so we give the arc a very low preference.
sewer_to_wwtw = Arc(
in_port=combined_sewer, out_port=oxford_wwtw, preference=1e10, name="sewer_to_wwtw"
)
sewer_overflow = Arc(
in_port=combined_sewer,
out_port=thames_mixer,
preference=1e-10,
name="sewer_overflow",
)
Create arcs¶
Arcs are a bit less interesting than nodes because they generally don't capture complicated physical behaviours. So we just create all of them below.
evenlode_to_thames = Arc(
in_port=evenlode, out_port=evenlode_thames, name="evenlode_to_thames"
)
thames_to_thames = Arc(
in_port=thames, out_port=evenlode_thames, name="thames_to_thames"
)
ray_to_cherwell = Arc(in_port=ray, out_port=cherwell_ray, name="ray_to_cherwell")
cherwell_to_cherwell = Arc(
in_port=cherwell, out_port=cherwell_ray, name="cherwell_to_cherwell"
)
thames_to_farmoor = Arc(
in_port=evenlode_thames, out_port=farmoor_abstraction, name="thames_to_farmoor"
)
farmoor_to_mixer = Arc(
in_port=farmoor_abstraction, out_port=thames_mixer, name="farmoor_to_mixer"
)
cherwell_to_mixer = Arc(
in_port=cherwell_ray, out_port=thames_mixer, name="cherwell_to_mixer"
)
wwtw_to_mixer = Arc(in_port=oxford_wwtw, out_port=thames_mixer, name="wwtw_to_mixer")
mixer_to_waste = Arc(
in_port=thames_mixer, out_port=thames_above_abingdon, name="mixer_to_waste"
)
distribution_to_demand = Arc(
in_port=distribution, out_port=oxford, name="distribution_to_demand"
)
reservoir_to_fwtw = Arc(in_port=farmoor, out_port=oxford_fwtw, name="reservoir_to_fwtw")
fwtw_to_sewer = Arc(in_port=oxford_fwtw, out_port=combined_sewer, name="fwtw_to_sewer")
demand_to_sewer = Arc(in_port=oxford, out_port=combined_sewer, name="demand_to_sewer")
land_to_sewer = Arc(in_port=oxford_land, out_port=combined_sewer, name="land_to_sewer")
land_to_gw = Arc(in_port=oxford_land, out_port=gw, name="land_to_gw")
garden_to_gw = Arc(in_port=oxford, out_port=gw, name="garden_to_gw")
gw_to_mixer = Arc(in_port=gw, out_port=thames_mixer, name="gw_to_mixer")
Again, we keep all the arcs in a tidy list together.
arclist = [
evenlode_to_thames,
thames_to_thames,
ray_to_cherwell,
cherwell_to_cherwell,
thames_to_farmoor,
farmoor_to_mixer,
cherwell_to_mixer,
wwtw_to_mixer,
sewer_overflow,
mixer_to_waste,
abstraction_to_farmoor,
distribution_to_demand,
demand_to_sewer,
land_to_sewer,
sewer_to_wwtw,
fwtw_to_sewer,
fwtw_to_distribution,
reservoir_to_fwtw,
land_to_gw,
garden_to_gw,
gw_to_mixer,
]
Mapping¶
Remember, WSIMOD is an integrated model. Because it covers so many different things, it is very easy to make mistakes. Thus it is always good practice to plot your data!
Below we load the node location data and create arcs from the information in the arclist.
location_fn = os.path.join(data_folder, "raw", "points_locations.geojson")
nodes_gdf = gpd.read_file(location_fn).set_index("name")
arcs_gdf = []
for arc in arclist:
arcs_gdf.append(
{
"name": arc.name,
"geometry": LineString(
[
nodes_gdf.loc[arc.in_port.name, "geometry"],
nodes_gdf.loc[arc.out_port.name, "geometry"],
]
),
}
)
arcs_gdf = gpd.GeoDataFrame(arcs_gdf, crs=nodes_gdf.crs)
Because we converted the information as GeoDataFrames, we can simply plot them below
f, ax = plt.subplots()
arcs_gdf.plot(ax=ax)
nodes_gdf.plot(color="r", ax=ax, zorder=10)
<Axes: >
Orchestration¶
Orchestration is making the simulation happen by calling functions in the nodes. These functions simulate physical behaviour within the node, and cause pulls/pushes to happen which in turn triggers physical behaviour in other nodes.
Orchestrating an individual timestep¶
We will start below by manually orchestrating a single timestep.
We start by setting the date, so that every node knows what forcing data to read for this timestep.
date = dates[0]
for node in nodelist:
node.t = date
print(date)
print(oxford_fwtw.t)
2009-03-03 00:00:00 2009-03-03 00:00:00
We can see the service reservoirs are empty but the supply reservoir is not!
print(oxford_fwtw.service_reservoir_tank.storage)
print(farmoor.tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 0.0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 10000000.0}
If we call the FWTW's treat_water function it will pull water from the supply reservoir and update its service reservoirs
oxford_fwtw.treat_water()
print(oxford_fwtw.service_reservoir_tank.storage)
print(farmoor.tank.storage)
{'temperature': 0.0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 43641.0} {'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 9955000.0}
This information is tracked in the arcs that enter the FWTW
print(oxford_fwtw.in_arcs)
{'reservoir_to_fwtw': <wsimod.arcs.arcs.Arc object at 0x7f97578d1450>}
print(reservoir_to_fwtw.flow_in)
print(reservoir_to_fwtw.flow_out)
45000.0 45000.0
Although none of that water has yet entered the distribution network (only some small flow from the earlier demonstration)
print(fwtw_to_distribution.flow_in)
15.0
That is because no water consumption demand had yet been generated.
If we call the demand node's create_demand function we see that the distribution arc becomes utilised.
oxford.create_demand()
print(fwtw_to_distribution.flow_in)
30015.0
We also see that this gets pushed onwards into the sewer system
print(demand_to_sewer.flow_in)
30000.0
Many nodes have functions intended to be called during orchestration. These functions are described in the documentation. For example, we see in the Land node API reference that the 'run' function is intended to be called from orchestration.
oxford_land.run()
Below we call the functions for other nodes
# Discharge GW
gw.distribute()
# Discharge sewers (pushed to other sewers or WWTW)
combined_sewer.make_discharge()
# Run WWTW model
oxford_wwtw.calculate_discharge()
# Make abstractions
farmoor.make_abstractions()
# Discharge WW
oxford_wwtw.make_discharge()
# Route catchments
evenlode.route()
thames.route()
ray.route()
cherwell.route()
Ending a timestep¶
Because mistakes happen, it is essential to carry out mass balance testing. Each node has a mass balance function that can be called. We see a mass balance violation resulting from the demonstration with the FWTW earlier.
for node in nodelist:
in_, ds_, out_ = node.node_mass_balance()
mass balance error for volume of 15.0 in oxford_distribution mass balance error for volume of -15.0 in oxford_fwtw
We should also call the end_timestep function in nodes and arcs. This is important for mass balance testing and capturing the behaviour of some dynamic processes in nodes.
for node in nodelist:
node.end_timestep()
for arc in arclist:
arc.end_timestep()
Model object¶
Of course it would be a massive pain to manually orchestrate every timestep. So instead we store node and arc information in a model object that will do the orchestration for us.
Because we have already created the nodes/arcs above, we simply need to add the instantiated lists above.
my_model = Model()
my_model.add_instantiated_nodes(nodelist)
my_model.add_instantiated_arcs(arclist)
my_model.dates = dates
The model object lets us reinitialise the nodes/arcs, and run all of the orchestration with a 'run' function.
my_model.reinit()
flows, _, _, _ = my_model.run()
0%| | 0/1456 [00:00<?, ?it/s]
2%|▏ | 34/1456 [00:00<00:04, 334.21it/s]
5%|▍ | 68/1456 [00:00<00:04, 332.50it/s]
7%|▋ | 102/1456 [00:00<00:04, 328.87it/s]
9%|▉ | 136/1456 [00:00<00:03, 330.27it/s]
12%|█▏ | 170/1456 [00:00<00:03, 329.55it/s]
14%|█▍ | 203/1456 [00:00<00:03, 328.25it/s]
16%|█▌ | 236/1456 [00:00<00:03, 327.16it/s]
18%|█▊ | 269/1456 [00:00<00:03, 325.20it/s]
21%|██ | 302/1456 [00:00<00:03, 324.05it/s]
23%|██▎ | 335/1456 [00:01<00:03, 323.37it/s]
25%|██▌ | 368/1456 [00:01<00:03, 321.71it/s]
28%|██▊ | 401/1456 [00:01<00:03, 319.41it/s]
30%|██▉ | 433/1456 [00:01<00:03, 319.06it/s]
32%|███▏ | 465/1456 [00:01<00:03, 316.97it/s]
34%|███▍ | 498/1456 [00:01<00:02, 320.00it/s]
36%|███▋ | 531/1456 [00:01<00:02, 320.95it/s]
39%|███▊ | 564/1456 [00:01<00:02, 321.60it/s]
41%|████ | 597/1456 [00:01<00:02, 322.85it/s]
43%|████▎ | 630/1456 [00:01<00:02, 320.32it/s]
46%|████▌ | 663/1456 [00:02<00:02, 322.03it/s]
48%|████▊ | 696/1456 [00:02<00:02, 321.77it/s]
50%|█████ | 729/1456 [00:02<00:02, 322.05it/s]
52%|█████▏ | 762/1456 [00:02<00:02, 322.78it/s]
55%|█████▍ | 795/1456 [00:02<00:02, 323.48it/s]
57%|█████▋ | 828/1456 [00:02<00:01, 324.25it/s]
59%|█████▉ | 861/1456 [00:02<00:01, 324.29it/s]
61%|██████▏ | 894/1456 [00:02<00:01, 322.93it/s]
64%|██████▎ | 927/1456 [00:02<00:01, 323.24it/s]
66%|██████▌ | 960/1456 [00:02<00:01, 324.11it/s]
68%|██████▊ | 993/1456 [00:03<00:01, 324.69it/s]
70%|███████ | 1026/1456 [00:03<00:01, 324.24it/s]
73%|███████▎ | 1059/1456 [00:03<00:01, 322.12it/s]
75%|███████▌ | 1092/1456 [00:03<00:01, 323.63it/s]
77%|███████▋ | 1125/1456 [00:03<00:01, 323.64it/s]
80%|███████▉ | 1158/1456 [00:03<00:00, 320.70it/s]
82%|████████▏ | 1191/1456 [00:03<00:00, 321.03it/s]
84%|████████▍ | 1224/1456 [00:03<00:00, 321.01it/s]
86%|████████▋ | 1257/1456 [00:03<00:00, 321.43it/s]
89%|████████▊ | 1290/1456 [00:03<00:00, 322.19it/s]
91%|█████████ | 1323/1456 [00:04<00:00, 322.61it/s]
93%|█████████▎| 1356/1456 [00:04<00:00, 322.46it/s]
95%|█████████▌| 1389/1456 [00:04<00:00, 322.56it/s]
98%|█████████▊| 1422/1456 [00:04<00:00, 320.74it/s]
100%|█████████▉| 1455/1456 [00:04<00:00, 321.08it/s]
100%|██████████| 1456/1456 [00:04<00:00, 322.86it/s]
The model outputs flows as a dictionary which can be converted to a dataframe
flows = pd.DataFrame(flows)
print(flows.sample(10))
arc flow time temperature \ 22454 farmoor_to_mixer 831337.786760 2012-02-05 3.322159 4411 thames_to_thames 145152.000000 2009-09-29 18.200000 17322 land_to_gw 1537.626321 2011-06-05 7.448602 12008 reservoir_to_fwtw 30934.213240 2010-09-25 11.406995 4307 ray_to_cherwell 11232.000000 2009-09-24 17.142857 28488 demand_to_sewer 30000.000000 2012-11-18 12.202857 5781 cherwell_to_mixer 946080.000000 2009-12-03 7.150372 19975 thames_to_farmoor 121305.600000 2011-10-10 15.075275 22851 cherwell_to_cherwell 158112.000000 2012-02-24 7.250000 2054 reservoir_to_fwtw 30934.213240 2009-06-08 3.355968 silicon fluoride chloride nitrate sulphate \ 22454 4732.286844 125.928754 31717.696425 5552.174444 44575.165921 4411 2236.502016 14.515200 6314.112000 819.142212 8418.816000 17322 0.014657 0.041876 0.012563 0.004188 14.656652 12008 155.848387 3.373687 812.274922 147.329528 1232.149042 4307 98.549568 1.925486 1143.257143 82.945114 1107.956571 28488 600.000000 12.000000 5400.000000 1800.000000 7500.000000 5781 8276.341166 222.760183 32238.000000 7911.726849 65255.162606 19975 877.184660 17.797536 5896.717426 572.873570 8286.039195 22851 724.089715 33.203520 12490.848000 993.464451 13344.652800 2054 29.794381 0.819281 236.483733 51.542925 357.986986 nitrogen sodium potassium calcium magnesium \ 22454 6257.871985 18937.103659 3753.586498 89938.503372 4091.512337 4411 856.396800 4325.529600 812.851200 14747.443200 798.336000 17322 0.837523 0.062814 1.465665 14.656652 1.256284 12008 154.740755 513.069458 104.715785 2562.969352 121.451412 4307 92.744229 800.039314 180.032914 1111.326171 69.157029 28488 1500.000000 6000.000000 900.000000 4500.000000 900.000000 5781 7773.393189 20698.823314 5695.734857 96635.314286 6062.613943 19975 609.008544 4352.406171 873.791589 12165.649509 678.122743 22851 1079.114400 7170.379200 972.388800 17336.980800 1225.368000 2054 53.508436 152.736044 30.240173 870.617651 40.692423 boron 22454 37.804009 4411 8.563968 17322 0.020938 12008 1.247807 4307 1.612594 28488 15.000000 5781 67.537152 19975 7.665652 22851 11.265480 2054 0.374769
Validation plots¶
Of course we shouldn't trust a model without proof, and this is doubly true for an integrated model whose errors may easily propagate.
Thankfully we have rich in-river water quality sampling in Oxford that we can use for validation
We load and format this data for dates and pollutants that overlap with what we have simulated
mixer_val_df = pd.read_csv(os.path.join(data_folder, "raw", "mixer_wims_val.csv"))
mixer_val_df.date = pd.to_datetime(mixer_val_df.date)
mixer_val_df = mixer_val_df.loc[mixer_val_df.date.isin(dates)]
val_pollutants = mixer_val_df.variable.unique()
mixer_val_df = mixer_val_df.pivot(index="date", columns="variable", values="value")
We get rid of the first day of flows because our tanks were initialised empty and will not be informative
flows = flows.loc[flows.time != dates[0]]
We convert our flows, which are simulated in kg/d into a concentration value (kg/m3/d).
flows_plot = flows.copy()
# Convert to KG/M3
for pol in set(val_pollutants):
if pol != "temperature":
flows_plot[pol] /= flows_plot.flow
We pick the model outlet as a validation location and make a pretty plot - fantastic!
plot_arc = "mixer_to_waste"
f, axs = plt.subplots(val_pollutants.size, 1)
for pol, ax in zip(val_pollutants, axs):
ax.plot(
flows_plot.loc[flows_plot.arc == plot_arc, [pol, "time"]].set_index("time"),
color="b",
label="simulation",
)
ax.plot(mixer_val_df[pol], ls="", marker="o", color="r", label="spot sample")
ax.set_ylabel(pol)
plt.legend()
<matplotlib.legend.Legend at 0x7f9757b8eb90>