WSIMOD model demonstration - Oxford (.py)¶
Note - this script can also be opened in interactive Python if you wanted to play around. On the GitHub it is in docs/demo/scripts
-
3.1 Freshwater Treatment Works
3.2 Land
3.3 Demand
3.4 Reservoir
3.5 Distribution
3.6 Wastewater Treatment Works
3.7 Sewers
3.8 Groundwater
3.9 Node list
-
4.1 Arc parameters
4.2 Create the arcs
-
7.1 Validation
We will cover a demo WSIMOD case study¶
The glamorous town of Oxford will be our demo case study. Below, we will create these nodes and arcs, orchestrate them into a model, and run simulations.
Although GIS is pretty, the schematic below is a more accurate representation of what will be created. WSIMOD treats everything as a node or an arc.
Imports and forcing data¶
Import packages
import os
import pandas as pd
from wsimod.arcs.arcs import Arc
from wsimod.core import constants
from wsimod.nodes.catchment import Catchment
from wsimod.nodes.demand import ResidentialDemand
from wsimod.nodes.land import Land
from wsimod.nodes.nodes import Node
from wsimod.nodes.sewer import Sewer
from wsimod.nodes.storage import Groundwater, Reservoir
from wsimod.nodes.waste import Waste
from wsimod.nodes.wtw import FWTW, WWTW
from wsimod.orchestration.model import Model
os.environ["USE_PYGEOS"] = "0"
import geopandas as gpd
from matplotlib import pyplot as plt
from shapely.geometry import LineString
Load input data
# Select the root path for the data folder. Use the appropriate value for your case.
data_folder = os.path.join(os.path.abspath(""), "docs", "demo", "data")
input_fid = os.path.join(data_folder, "processed", "timeseries_data.csv")
input_data = pd.read_csv(input_fid)
input_data.loc[input_data.variable == "flow", "value"] *= constants.M3_S_TO_M3_DT
input_data.loc[input_data.variable == "precipitation", "value"] *= constants.MM_TO_M
input_data.date = pd.to_datetime(input_data.date)
data_input_dict = input_data.set_index(["variable", "date"]).value.to_dict()
data_input_dict = (
input_data.groupby("site")
.apply(lambda x: x.set_index(["variable", "date"]).value.to_dict())
.to_dict()
)
print(input_data.sample(10))
site date variable value 45496 thames 2010-02-26 sodium 1.711429e-02 18431 cherwell 2011-10-18 chloride 1.053800e-01 12401 cherwell 2011-03-26 fluoride 1.800000e-04 48496 evenlode 2010-05-25 potassium 2.887500e-03 70624 cherwell 2011-03-09 flow 3.697920e+05 75512 thames 2012-08-10 flow 1.235520e+06 59772 evenlode 2009-05-18 magnesium 4.400000e-03 5641 thames 2012-08-27 temperature 1.615714e+01 18894 cherwell 2013-01-23 chloride 5.245000e-02 72733 evenlode 2012-12-21 flow 1.684800e+06
/tmp/ipykernel_3210/946595242.py:12: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning. .apply(lambda x: x.set_index(["variable", "date"]).value.to_dict())
Input data is stored in dicts
print(data_input_dict["cherwell"][("boron", pd.to_datetime("2010-11-20"))])
6.985714285714286e-05
We select dates that are available in the input data
dates = input_data.date.unique()
dates = dates[dates.argsort()]
dates = [pd.Timestamp(x) for x in dates]
print(dates[0:10])
[Timestamp('2009-03-03 00:00:00'), Timestamp('2009-03-04 00:00:00'), Timestamp('2009-03-05 00:00:00'), Timestamp('2009-03-06 00:00:00'), Timestamp('2009-03-07 00:00:00'), Timestamp('2009-03-08 00:00:00'), Timestamp('2009-03-09 00:00:00'), Timestamp('2009-03-10 00:00:00'), Timestamp('2009-03-11 00:00:00'), Timestamp('2009-03-12 00:00:00')]
We can specify the pollutants. In this example we choose based on what pollutants we have input data for.
constants.POLLUTANTS = input_data.variable.unique().tolist()
constants.POLLUTANTS.remove("flow")
constants.POLLUTANTS.remove("precipitation")
constants.POLLUTANTS.remove("et0")
constants.NON_ADDITIVE_POLLUTANTS = ["temperature"]
constants.ADDITIVE_POLLUTANTS = list(
set(constants.POLLUTANTS).difference(constants.NON_ADDITIVE_POLLUTANTS)
)
constants.FLOAT_ACCURACY = 1e-11
print(constants.POLLUTANTS)
['temperature', 'silicon', 'fluoride', 'chloride', 'nitrate', 'sulphate', 'nitrogen', 'sodium', 'potassium', 'calcium', 'magnesium', 'boron']
Create nodes¶
For waste nodes, no parameters are needed, they are just the model outlet
thames_above_abingdon = Waste(name="thames_above_abingdon")
For junctions and abstraction locations, we can simply use the default nodes
farmoor_abstraction = Node(name="farmoor_abstraction")
evenlode_thames = Node(name="evenlode_thames")
cherwell_ray = Node(name="cherwell_ray")
cherwell_thames = Node(name="cherwell_thames")
thames_mixer = Node(name="thames_mixer")
For catchment nodes, we only need to specify the input data (as a dictionary format).
evenlode = Catchment(name="evenlode", data_input_dict=data_input_dict["evenlode"])
thames = Catchment(name="thames", data_input_dict=data_input_dict["thames"])
ray = Catchment(name="ray", data_input_dict=data_input_dict["ray"])
cherwell = Catchment(name="cherwell", data_input_dict=data_input_dict["cherwell"])
We can see that, even though we provided mimimal information (name and input data) each node comes with many predefined functions.
print(dir(evenlode))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'apply_overrides', 'blend_vqip', 'check_basic', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'data_input_dict', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'end_timestep_', 'extract_vqip', 'extract_vqip_c', 'get_avail', 'get_connected', 'get_data_input', 'get_direction_arcs', 'get_flow', 'in_arcs', 'in_arcs_type', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'node_mass_balance', 'out_arcs', 'out_arcs_type', 'pull_check', 'pull_check_abstraction', 'pull_check_basic', 'pull_check_deny', 'pull_check_handler', 'pull_distributed', 'pull_set', 'pull_set_abstraction', 'pull_set_deny', 'pull_set_handler', 'push_check', 'push_check_accept', 'push_check_basic', 'push_check_deny', 'push_check_handler', 'push_distributed', 'push_set', 'push_set_deny', 'push_set_handler', 'query_handler', 'reinit', 'route', 'sum_vqip', 't', 'total_in', 'total_out', 'total_to_concentration', 'unrouted_water', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c']
Freshwater treatment works¶
Each type of node uses different parameters (see API reference). Below we create a freshwater treatment works (FWTW)
oxford_fwtw = FWTW(
service_reservoir_storage_capacity=1e5,
service_reservoir_storage_area=2e4,
treatment_throughput_capacity=4.5e4,
name="oxford_fwtw",
)
Each node type has different types of functionality available
print(dir(oxford_fwtw))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_liquor_multiplier', '_percent_solids', 'apply_overrides', 'blend_vqip', 'calculate_volume', 'check_basic', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'current_input', 'data_input_dict', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'end_timestep_', 'extract_vqip', 'extract_vqip_c', 'get_connected', 'get_data_input', 'get_direction_arcs', 'get_excess_throughput', 'in_arcs', 'in_arcs_type', 'liquor', 'liquor_multiplier', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'node_mass_balance', 'out_arcs', 'out_arcs_type', 'percent_solids', 'previous_pulled', 'process_parameters', 'pull_check', 'pull_check_basic', 'pull_check_deny', 'pull_check_fwtw', 'pull_check_handler', 'pull_distributed', 'pull_set', 'pull_set_deny', 'pull_set_fwtw', 'pull_set_handler', 'push_check', 'push_check_accept', 'push_check_basic', 'push_check_deny', 'push_check_handler', 'push_distributed', 'push_set', 'push_set_deny', 'push_set_handler', 'query_handler', 'reinit', 'service_reservoir_initial_storage', 'service_reservoir_storage_area', 'service_reservoir_storage_capacity', 'service_reservoir_storage_elevation', 'service_reservoir_tank', 'solids', 'sum_vqip', 't', 'total_deficit', 'total_in', 'total_out', 'total_pulled', 'total_to_concentration', 'treat_current_input', 'treat_water', 'treated', 'treatment_throughput_capacity', 'unpushed_sludge', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c']
The FWTW node has a tank representing the service reservoirs, we can see that it has been initialised empty.
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
If we try to pull water from the FWTW, it responds that there is no water to pull.
print(oxford_fwtw.pull_check({"volume": 10}))
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
If we add in some water, we see the pull check responds that water is available.
oxford_fwtw.service_reservoir_tank.storage["volume"] += 25
print(oxford_fwtw.pull_check({"volume": 10}))
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 10.0}
When we set a pull request, we see that we successfully receive the water and the tank is updated.
reply = oxford_fwtw.pull_set({"volume": 10})
print(reply)
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 10.0}
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
Land¶
We will now create a land node, it is a bit involved so you might want to skip ahead to demand, or check out the land node tutorial
Data inputs are a single dictionary
land_inputs = data_input_dict["oxford_land"]
print(land_inputs[("precipitation", pd.to_datetime("2010-11-20"))])
print(land_inputs[("et0", pd.to_datetime("2010-11-20"))])
print(land_inputs[("temperature", pd.to_datetime("2009-10-15"))])
0.0003 0.002 13.107142857142858
Assign some default pollutant deposition values (kg/m2/d)
pollutant_deposition = {
"boron": 100e-10,
"calcium": 70e-7,
"chloride": 60e-10,
"fluoride": 0.2e-7,
"magnesium": 6e-7,
"nitrate": 2e-9,
"nitrogen": 4e-7,
"potassium": 7e-7,
"silicon": 7e-9,
"sodium": 30e-9,
"sulphate": 70e-7,
}
Create two surfaces as a list of dicts
surface = [
{
"type_": "PerviousSurface",
"area": 2e7,
"pollutant_load": pollutant_deposition,
"surface": "rural",
"field_capacity": 0.3,
"depth": 0.5,
"initial_storage": 2e7 * 0.4 * 0.5,
},
{
"type_": "ImperviousSurface",
"area": 1e7,
"pollutant_load": pollutant_deposition,
"surface": "urban",
"initial_storage": 5e6,
},
]
Create the land node from these surfaces and the input data
oxford_land = Land(surfaces=surface, name="oxford_land", data_input_dict=land_inputs)
We can see the land node has various tanks that have been initialised empty
print(oxford_land.surface_runoff.storage)
print(oxford_land.subsurface_runoff.storage)
print(oxford_land.percolation.storage)
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
We can see the surfaces have also been initialised, although they are not empty because we provided 'initial_storage' parameters.
rural_surface = oxford_land.get_surface("rural")
urban_surface = oxford_land.get_surface("urban")
print("{0}-{1}".format("rural", rural_surface.storage))
print("{0}-{1}".format("urban", urban_surface.storage))
rural-{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 4000000.0}
urban-{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 5000000.0}
We can run a timestep of the land node with the 'run' command
oxford_land.t = pd.to_datetime("2012-12-22")
oxford_land.run()
We can see that the land and surface tanks have been updated
print(oxford_land.surface_runoff.storage)
print(oxford_land.subsurface_runoff.storage)
print(oxford_land.percolation.storage)
print("{0}-{1}".format("rural", rural_surface.storage))
print("{0}-{1}".format("urban", urban_surface.storage))
{'temperature': 3.521534008631931, 'silicon': 0.00020062235262918442, 'fluoride': 0.0005732067217976697, 'chloride': 0.0001719620165393009, 'nitrate': 5.732067217976698e-05, 'sulphate': 0.20062235262918443, 'nitrogen': 0.011464134435953396, 'sodium': 0.0008598100826965045, 'potassium': 0.020062235262918445, 'calcium': 0.20062235262918443, 'magnesium': 0.017196201653930095, 'boron': 0.00028660336089883487, 'volume': 12400.000000000002}
{'temperature': 0.9722493642718524, 'silicon': 0.0017554455855053634, 'fluoride': 0.0050155588157296096, 'chloride': 0.0015046676447188828, 'nitrate': 0.000501555881572961, 'sulphate': 1.7554455855053634, 'nitrogen': 0.1003111763145922, 'sodium': 0.007523338223594414, 'potassium': 0.17554455855053633, 'calcium': 1.7554455855053634, 'magnesium': 0.1504667644718883, 'boron': 0.0025077794078648048, 'volume': 58900.0}
{'temperature': 0.3349282031818326, 'silicon': 0.005868203814403644, 'fluoride': 0.016766296612581843, 'chloride': 0.005029888983774552, 'nitrate': 0.001676629661258184, 'sulphate': 5.868203814403645, 'nitrogen': 0.3353259322516368, 'sodium': 0.02514944491887276, 'potassium': 0.5868203814403645, 'calcium': 5.868203814403645, 'magnesium': 0.5029888983774553, 'boron': 0.008383148306290921, 'volume': 176700.00000000003}
rural-{'temperature': 6.203473168254872, 'silicon': 0.1321757282474618, 'fluoride': 0.3776449378498909, 'chloride': 0.11329348135496725, 'nitrate': 0.037764493784989084, 'sulphate': 132.17572824746182, 'nitrogen': 7.552898756997817, 'sodium': 0.5664674067748363, 'potassium': 13.21757282474618, 'calcium': 132.17572824746182, 'magnesium': 11.329348135496726, 'boron': 0.18882246892494545, 'volume': 3980000.0}
urban-{'temperature': 0.13343969249141666, 'silicon': 0.06999999999999999, 'fluoride': 0.2, 'chloride': 0.06, 'nitrate': 0.02, 'sulphate': 70.0, 'nitrogen': 4.0, 'sodium': 0.3, 'potassium': 7.0, 'calcium': 70.0, 'magnesium': 6.0, 'boron': 0.1, 'volume': 5104000.0}
Residential demand¶
The residential demand node requires population, per capita demand and a pollutant_load dictionary that defines how much (weight in kg) pollution is generated per person per day.
oxford = ResidentialDemand(
name="oxford",
population=2e5,
per_capita=0.15,
pollutant_load={
"boron": 500 * constants.UG_L_TO_KG_M3 * 0.15,
"calcium": 150 * constants.MG_L_TO_KG_M3 * 0.15,
"chloride": 180 * constants.MG_L_TO_KG_M3 * 0.15,
"fluoride": 0.4 * constants.MG_L_TO_KG_M3 * 0.15,
"magnesium": 30 * constants.MG_L_TO_KG_M3 * 0.15,
"nitrate": 60 * constants.MG_L_TO_KG_M3 * 0.15,
"nitrogen": 50 * constants.MG_L_TO_KG_M3 * 0.15,
"potassium": 30 * constants.MG_L_TO_KG_M3 * 0.15,
"silicon": 20 * constants.MG_L_TO_KG_M3 * 0.15,
"sodium": 200 * constants.MG_L_TO_KG_M3 * 0.15,
"sulphate": 250 * constants.MG_L_TO_KG_M3 * 0.15,
"temperature": 14,
},
data_input_dict=land_inputs,
)
# pollutant_load calculated based on expected effluent at WWTW
Reservoir¶
A reservoir node is used to make abstractions from rivers and supply FWTWs
farmoor = Reservoir(
name="farmoor", capacity=1e7, initial_storage=1e7, area=1.5e6, datum=62
)
distribution = Node(name="oxford_distribution")
Wastewater treatment works¶
Wastewater treatment works (WWTW) are nodes that can store sewage water temporarily in storm tanks, and reduce the pollution amounts in water before releasing them onwards to rivers.
oxford_wwtw = WWTW(
stormwater_storage_capacity=2e4,
stormwater_storage_area=2e4,
treatment_throughput_capacity=5e4,
name="oxford_wwtw",
)
Sewers¶
Sewer nodes enable water to transition between households and WWTWs, and between impervious surfaces and rivers or WWTWs. They use a timearea diagram to represent travel time, which assigns a specified percentage of water to take a specified duration to pass through the sewer node.
combined_sewer = Sewer(
capacity=4e6, pipe_timearea={0: 0.8, 1: 0.15, 2: 0.05}, name="combined_sewer"
)
Groundwater¶
Groundwater nodes implement a simple residence time to determine baseflow
gw = Groundwater(capacity=3.2e9, area=3.2e8, name="gw", residence_time=20)
Create a nodelist¶
To keep all the nodes in one place, we put them into a list
nodelist = [
thames_above_abingdon,
evenlode,
thames,
ray,
cherwell,
oxford,
distribution,
farmoor,
oxford_fwtw,
oxford_wwtw,
combined_sewer,
oxford_land,
gw,
farmoor_abstraction,
evenlode_thames,
cherwell_ray,
cherwell_thames,
thames_mixer,
]
print(nodelist)
[<wsimod.nodes.waste.Waste object at 0x7f623ebbf490>, <wsimod.nodes.catchment.Catchment object at 0x7f623eb51210>, <wsimod.nodes.catchment.Catchment object at 0x7f623eb510d0>, <wsimod.nodes.catchment.Catchment object at 0x7f623eb4f210>, <wsimod.nodes.catchment.Catchment object at 0x7f623eb4e190>, <wsimod.nodes.demand.ResidentialDemand object at 0x7f623ecdc490>, <wsimod.nodes.nodes.Node object at 0x7f623ecdc350>, <wsimod.nodes.storage.Reservoir object at 0x7f623ecdd510>, <wsimod.nodes.wtw.FWTW object at 0x7f623ebbf790>, <wsimod.nodes.wtw.WWTW object at 0x7f623ec956d0>, <wsimod.nodes.sewer.Sewer object at 0x7f623ec8f710>, <wsimod.nodes.land.Land object at 0x7f623ece9410>, <wsimod.nodes.storage.Groundwater object at 0x7f623ec8e1d0>, <wsimod.nodes.nodes.Node object at 0x7f623ebbed90>, <wsimod.nodes.nodes.Node object at 0x7f623ebbd910>, <wsimod.nodes.nodes.Node object at 0x7f623ebbcb10>, <wsimod.nodes.nodes.Node object at 0x7f623ebbc910>, <wsimod.nodes.nodes.Node object at 0x7f623eb96f90>]
# Standard simple arcs
fwtw_to_distribution = Arc(
in_port=oxford_fwtw, out_port=distribution, name="fwtw_to_distribution"
)
print(fwtw_to_distribution)
<wsimod.arcs.arcs.Arc object at 0x7f623ec8c650>
As with nodes, even though we only gave it a few parameters, the arc comes with a lot built in
print(dir(fwtw_to_distribution))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'apply_overrides', 'arc_mass_balance', 'blend_vqip', 'capacity', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'extract_vqip', 'extract_vqip_c', 'flow_in', 'flow_out', 'get_excess', 'in_port', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'out_port', 'preference', 'reinit', 'send_pull_check', 'send_pull_request', 'send_push_check', 'send_push_request', 'sum_vqip', 'total_to_concentration', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c', 'vqip_in', 'vqip_out']
We can see that the arc links the two nodes
print(fwtw_to_distribution.in_port)
<wsimod.nodes.wtw.FWTW object at 0x7f623ebbf790>
print(fwtw_to_distribution.out_port)
<wsimod.nodes.nodes.Node object at 0x7f623ecdc350>
And that it has updated the nodes that it is connecting.
print(oxford_fwtw.out_arcs)
{'fwtw_to_distribution': <wsimod.arcs.arcs.Arc object at 0x7f623ec8c650>}
print(distribution.in_arcs)
{'fwtw_to_distribution': <wsimod.arcs.arcs.Arc object at 0x7f623ec8c650>}
We use arcs to send checks and requests..
print(fwtw_to_distribution.send_pull_check({"volume": 20}))
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
reply = fwtw_to_distribution.send_pull_request({"volume": 20})
print(reply)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
They convey this information to the nodes that they connect to, which update their state variables
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 0.0}
In turn, the arcs update their own state variables.
print(fwtw_to_distribution.flow_in)
print(fwtw_to_distribution.flow_out)
15.0 15.0
Arc parameters¶
Besides the in/out ports and names, arcs can have a parameter for their capacity, to limit the flow that may pass through it each timestep. A typical example would be on river abstractions to a reservoir
abstraction_to_farmoor = Arc(
in_port=farmoor_abstraction,
out_port=farmoor,
name="abstraction_to_farmoor",
capacity=5e4,
)
A bit more sophisticated is the 'preference' parameter. We use preference to express where we would prefer the model to send water. In this example, the sewer can send water to both the treatment plant and directly into the river. Of course we would always to prefer to send water to the plant, so we give it a very high preference. Discharging into the river should only be done if there is no capacity left at the WWTW, so we give the arc a very low preference.
sewer_to_wwtw = Arc(
in_port=combined_sewer, out_port=oxford_wwtw, preference=1e10, name="sewer_to_wwtw"
)
sewer_overflow = Arc(
in_port=combined_sewer,
out_port=thames_mixer,
preference=1e-10,
name="sewer_overflow",
)
Create arcs¶
Arcs are a bit less interesting than nodes because they generally don't capture complicated physical behaviours. So we just create all of them below.
evenlode_to_thames = Arc(
in_port=evenlode, out_port=evenlode_thames, name="evenlode_to_thames"
)
thames_to_thames = Arc(
in_port=thames, out_port=evenlode_thames, name="thames_to_thames"
)
ray_to_cherwell = Arc(in_port=ray, out_port=cherwell_ray, name="ray_to_cherwell")
cherwell_to_cherwell = Arc(
in_port=cherwell, out_port=cherwell_ray, name="cherwell_to_cherwell"
)
thames_to_farmoor = Arc(
in_port=evenlode_thames, out_port=farmoor_abstraction, name="thames_to_farmoor"
)
farmoor_to_mixer = Arc(
in_port=farmoor_abstraction, out_port=thames_mixer, name="farmoor_to_mixer"
)
cherwell_to_mixer = Arc(
in_port=cherwell_ray, out_port=thames_mixer, name="cherwell_to_mixer"
)
wwtw_to_mixer = Arc(in_port=oxford_wwtw, out_port=thames_mixer, name="wwtw_to_mixer")
mixer_to_waste = Arc(
in_port=thames_mixer, out_port=thames_above_abingdon, name="mixer_to_waste"
)
distribution_to_demand = Arc(
in_port=distribution, out_port=oxford, name="distribution_to_demand"
)
reservoir_to_fwtw = Arc(in_port=farmoor, out_port=oxford_fwtw, name="reservoir_to_fwtw")
fwtw_to_sewer = Arc(in_port=oxford_fwtw, out_port=combined_sewer, name="fwtw_to_sewer")
demand_to_sewer = Arc(in_port=oxford, out_port=combined_sewer, name="demand_to_sewer")
land_to_sewer = Arc(in_port=oxford_land, out_port=combined_sewer, name="land_to_sewer")
land_to_gw = Arc(in_port=oxford_land, out_port=gw, name="land_to_gw")
garden_to_gw = Arc(in_port=oxford, out_port=gw, name="garden_to_gw")
gw_to_mixer = Arc(in_port=gw, out_port=thames_mixer, name="gw_to_mixer")
Again, we keep all the arcs in a tidy list together.
arclist = [
evenlode_to_thames,
thames_to_thames,
ray_to_cherwell,
cherwell_to_cherwell,
thames_to_farmoor,
farmoor_to_mixer,
cherwell_to_mixer,
wwtw_to_mixer,
sewer_overflow,
mixer_to_waste,
abstraction_to_farmoor,
distribution_to_demand,
demand_to_sewer,
land_to_sewer,
sewer_to_wwtw,
fwtw_to_sewer,
fwtw_to_distribution,
reservoir_to_fwtw,
land_to_gw,
garden_to_gw,
gw_to_mixer,
]
Mapping¶
Remember, WSIMOD is an integrated model. Because it covers so many different things, it is very easy to make mistakes. Thus it is always good practice to plot your data!
Below we load the node location data and create arcs from the information in the arclist.
location_fn = os.path.join(data_folder, "raw", "points_locations.geojson")
nodes_gdf = gpd.read_file(location_fn).set_index("name")
arcs_gdf = []
for arc in arclist:
arcs_gdf.append(
{
"name": arc.name,
"geometry": LineString(
[
nodes_gdf.loc[arc.in_port.name, "geometry"],
nodes_gdf.loc[arc.out_port.name, "geometry"],
]
),
}
)
arcs_gdf = gpd.GeoDataFrame(arcs_gdf, crs=nodes_gdf.crs)
Because we converted the information as GeoDataFrames, we can simply plot them below
f, ax = plt.subplots()
arcs_gdf.plot(ax=ax)
nodes_gdf.plot(color="r", ax=ax, zorder=10)
<Axes: >
Orchestration¶
Orchestration is making the simulation happen by calling functions in the nodes. These functions simulate physical behaviour within the node, and cause pulls/pushes to happen which in turn triggers physical behaviour in other nodes.
Orchestrating an individual timestep¶
We will start below by manually orchestrating a single timestep.
We start by setting the date, so that every node knows what forcing data to read for this timestep.
date = dates[0]
for node in nodelist:
node.t = date
print(date)
print(oxford_fwtw.t)
2009-03-03 00:00:00 2009-03-03 00:00:00
We can see the service reservoirs are empty but the supply reservoir is not!
print(oxford_fwtw.service_reservoir_tank.storage)
print(farmoor.tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 0.0}
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 10000000.0}
If we call the FWTW's treat_water function it will pull water from the supply reservoir and update its service reservoirs
oxford_fwtw.treat_water()
print(oxford_fwtw.service_reservoir_tank.storage)
print(farmoor.tank.storage)
{'temperature': 0.0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 43641.0}
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 9955000.0}
This information is tracked in the arcs that enter the FWTW
print(oxford_fwtw.in_arcs)
{'reservoir_to_fwtw': <wsimod.arcs.arcs.Arc object at 0x7f623ec38290>}
print(reservoir_to_fwtw.flow_in)
print(reservoir_to_fwtw.flow_out)
45000.0 45000.0
Although none of that water has yet entered the distribution network (only some small flow from the earlier demonstration)
print(fwtw_to_distribution.flow_in)
15.0
That is because no water consumption demand had yet been generated.
If we call the demand node's create_demand function we see that the distribution arc becomes utilised.
oxford.create_demand()
print(fwtw_to_distribution.flow_in)
30015.0
We also see that this gets pushed onwards into the sewer system
print(demand_to_sewer.flow_in)
30000.0
Many nodes have functions intended to be called during orchestration. These functions are described in the documentation. For example, we see in the Land node API reference that the 'run' function is intended to be called from orchestration.
oxford_land.run()
Below we call the functions for other nodes
# Discharge GW
gw.distribute()
# Discharge sewers (pushed to other sewers or WWTW)
combined_sewer.make_discharge()
# Run WWTW model
oxford_wwtw.calculate_discharge()
# Make abstractions
farmoor.make_abstractions()
# Discharge WW
oxford_wwtw.make_discharge()
# Route catchments
evenlode.route()
thames.route()
ray.route()
cherwell.route()
Ending a timestep¶
Because mistakes happen, it is essential to carry out mass balance testing. Each node has a mass balance function that can be called. We see a mass balance violation resulting from the demonstration with the FWTW earlier.
for node in nodelist:
in_, ds_, out_ = node.node_mass_balance()
mass balance error for volume of 15.0 in oxford_distribution mass balance error for volume of -15.0 in oxford_fwtw
We should also call the end_timestep function in nodes and arcs. This is important for mass balance testing and capturing the behaviour of some dynamic processes in nodes.
for node in nodelist:
node.end_timestep()
for arc in arclist:
arc.end_timestep()
Model object¶
Of course it would be a massive pain to manually orchestrate every timestep. So instead we store node and arc information in a model object that will do the orchestration for us.
Because we have already created the nodes/arcs above, we simply need to add the instantiated lists above.
my_model = Model()
my_model.add_instantiated_nodes(nodelist)
my_model.add_instantiated_arcs(arclist)
my_model.dates = dates
The model object lets us reinitialise the nodes/arcs, and run all of the orchestration with a 'run' function.
my_model.reinit()
flows, _, _, _ = my_model.run()
0%| | 0/1456 [00:00<?, ?it/s]
2%|▏ | 33/1456 [00:00<00:04, 324.26it/s]
5%|▍ | 66/1456 [00:00<00:04, 322.53it/s]
7%|▋ | 99/1456 [00:00<00:04, 322.26it/s]
9%|▉ | 132/1456 [00:00<00:04, 322.60it/s]
11%|█▏ | 165/1456 [00:00<00:04, 320.12it/s]
14%|█▎ | 198/1456 [00:00<00:03, 318.09it/s]
16%|█▌ | 230/1456 [00:00<00:03, 317.14it/s]
18%|█▊ | 262/1456 [00:00<00:03, 314.32it/s]
20%|██ | 294/1456 [00:00<00:03, 310.23it/s]
22%|██▏ | 326/1456 [00:01<00:03, 310.35it/s]
25%|██▍ | 358/1456 [00:01<00:03, 311.66it/s]
27%|██▋ | 390/1456 [00:01<00:03, 312.84it/s]
29%|██▉ | 422/1456 [00:01<00:03, 313.46it/s]
31%|███ | 454/1456 [00:01<00:03, 314.51it/s]
33%|███▎ | 486/1456 [00:01<00:03, 314.01it/s]
36%|███▌ | 518/1456 [00:01<00:02, 314.56it/s]
38%|███▊ | 550/1456 [00:01<00:02, 310.86it/s]
40%|███▉ | 582/1456 [00:01<00:02, 311.56it/s]
42%|████▏ | 614/1456 [00:01<00:02, 308.31it/s]
44%|████▍ | 646/1456 [00:02<00:02, 309.75it/s]
46%|████▋ | 677/1456 [00:02<00:02, 305.32it/s]
49%|████▊ | 709/1456 [00:02<00:02, 307.90it/s]
51%|█████ | 741/1456 [00:02<00:02, 309.88it/s]
53%|█████▎ | 773/1456 [00:02<00:02, 311.90it/s]
55%|█████▌ | 805/1456 [00:02<00:02, 313.34it/s]
57%|█████▋ | 837/1456 [00:02<00:01, 311.44it/s]
60%|█████▉ | 869/1456 [00:02<00:01, 312.53it/s]
62%|██████▏ | 901/1456 [00:02<00:01, 313.59it/s]
64%|██████▍ | 933/1456 [00:02<00:01, 313.27it/s]
66%|██████▋ | 965/1456 [00:03<00:01, 313.96it/s]
68%|██████▊ | 997/1456 [00:03<00:01, 313.46it/s]
71%|███████ | 1029/1456 [00:03<00:01, 313.56it/s]
73%|███████▎ | 1061/1456 [00:03<00:01, 313.32it/s]
75%|███████▌ | 1093/1456 [00:03<00:01, 311.12it/s]
77%|███████▋ | 1125/1456 [00:03<00:01, 312.62it/s]
79%|███████▉ | 1157/1456 [00:03<00:00, 311.96it/s]
82%|████████▏ | 1189/1456 [00:03<00:00, 312.06it/s]
84%|████████▍ | 1221/1456 [00:03<00:00, 311.22it/s]
86%|████████▌ | 1253/1456 [00:04<00:00, 310.62it/s]
88%|████████▊ | 1285/1456 [00:04<00:00, 311.15it/s]
90%|█████████ | 1317/1456 [00:04<00:00, 311.44it/s]
93%|█████████▎| 1349/1456 [00:04<00:00, 311.76it/s]
95%|█████████▍| 1381/1456 [00:04<00:00, 309.60it/s]
97%|█████████▋| 1413/1456 [00:04<00:00, 310.47it/s]
99%|█████████▉| 1445/1456 [00:04<00:00, 310.95it/s]
100%|██████████| 1456/1456 [00:04<00:00, 312.57it/s]
The model outputs flows as a dictionary which can be converted to a dataframe
flows = pd.DataFrame(flows)
print(flows.sample(10))
arc flow time temperature silicon \
15610 wwtw_to_mixer 30927.835047 2011-03-16 12.851023 26.255192
3267 demand_to_sewer 30000.000000 2009-08-05 20.363333 600.000000
8105 gw_to_mixer 16012.319302 2010-03-23 7.003461 0.097770
20094 land_to_gw 3909.200273 2011-10-15 14.509779 0.060135
19728 mixer_to_waste 215272.581766 2011-09-28 15.586675 1420.287524
3246 demand_to_sewer 30000.000000 2009-08-04 20.300000 600.000000
17773 wwtw_to_mixer 30972.155285 2011-06-27 19.985006 25.424868
27305 farmoor_to_mixer 805417.786760 2012-09-23 12.026997 5021.309075
8680 wwtw_to_mixer 30927.835047 2010-04-20 14.186607 24.814092
12690 cherwell_to_mixer 202780.800000 2010-10-28 8.202964 1763.863201
fluoride chloride nitrate sulphate nitrogen \
15610 0.526166 211.148560 66.181418 296.807459 56.499095
3267 12.000000 5400.000000 1800.000000 7500.000000 1500.000000
8105 0.279342 0.083803 0.027934 97.769596 5.586834
20094 0.171815 0.051544 0.017181 60.135229 3.436299
19728 31.283776 11802.923210 946.466293 13463.625990 953.447447
3246 12.000000 5400.000000 1800.000000 7500.000000 1500.000000
17773 0.530576 211.017033 65.841305 297.933580 56.338042
27305 100.810350 22686.622149 5067.594914 34703.522091 5754.865401
8680 0.499744 202.955396 64.853372 285.189411 54.989594
12690 24.661769 12724.520379 1165.901605 15346.312457 1285.919218
sodium potassium calcium magnesium boron
15610 219.966387 33.986784 245.926312 34.594559 0.547285
3267 6000.000000 900.000000 4500.000000 900.000000 15.000000
8105 0.419013 9.776960 97.769596 8.380251 0.139671
20094 0.257722 6.013523 60.135229 5.154448 0.085907
19728 9012.681710 1685.702421 18471.986847 1292.875280 14.344778
3246 6000.000000 900.000000 4500.000000 900.000000 15.000000
17773 219.946560 34.055696 248.580379 34.693852 0.547155
27305 13885.691085 2882.863169 83026.814272 3759.503851 31.659908
8680 214.938272 33.085452 226.942479 33.681976 0.538218
12690 8606.592823 1669.405989 20521.278720 1569.574491 18.729693
Validation plots¶
Of course we shouldn't trust a model without proof, and this is doubly true for an integrated model whose errors may easily propagate.
Thankfully we have rich in-river water quality sampling in Oxford that we can use for validation
We load and format this data for dates and pollutants that overlap with what we have simulated
mixer_val_df = pd.read_csv(os.path.join(data_folder, "raw", "mixer_wims_val.csv"))
mixer_val_df.date = pd.to_datetime(mixer_val_df.date)
mixer_val_df = mixer_val_df.loc[mixer_val_df.date.isin(dates)]
val_pollutants = mixer_val_df.variable.unique()
mixer_val_df = mixer_val_df.pivot(index="date", columns="variable", values="value")
We get rid of the first day of flows because our tanks were initialised empty and will not be informative
flows = flows.loc[flows.time != dates[0]]
We convert our flows, which are simulated in kg/d into a concentration value (kg/m3/d).
flows_plot = flows.copy()
# Convert to KG/M3
for pol in set(val_pollutants):
if pol != "temperature":
flows_plot[pol] /= flows_plot.flow
We pick the model outlet as a validation location and make a pretty plot - fantastic!
plot_arc = "mixer_to_waste"
f, axs = plt.subplots(val_pollutants.size, 1)
for pol, ax in zip(val_pollutants, axs):
ax.plot(
flows_plot.loc[flows_plot.arc == plot_arc, [pol, "time"]].set_index("time"),
color="b",
label="simulation",
)
ax.plot(mixer_val_df[pol], ls="", marker="o", color="r", label="spot sample")
ax.set_ylabel(pol)
plt.legend()
<matplotlib.legend.Legend at 0x7f623eb3b890>