WSIMOD model demonstration - Oxford (.py)¶
Note - this script can also be opened in interactive Python if you wanted to play around. On the GitHub it is in docs/demo/scripts
-
3.1 Freshwater Treatment Works
3.2 Land
3.3 Demand
3.4 Reservoir
3.5 Distribution
3.6 Wastewater Treatment Works
3.7 Sewers
3.8 Groundwater
3.9 Node list
-
4.1 Arc parameters
4.2 Create the arcs
-
7.1 Validation
We will cover a demo WSIMOD case study¶
The glamorous town of Oxford will be our demo case study. Below, we will create these nodes and arcs, orchestrate them into a model, and run simulations.
Although GIS is pretty, the schematic below is a more accurate representation of what will be created. WSIMOD treats everything as a node or an arc.
Imports and forcing data¶
Import packages
import os
import pandas as pd
from wsimod.arcs.arcs import Arc
from wsimod.core import constants
from wsimod.nodes.catchment import Catchment
from wsimod.nodes.demand import ResidentialDemand
from wsimod.nodes.land import Land
from wsimod.nodes.nodes import Node
from wsimod.nodes.sewer import Sewer
from wsimod.nodes.storage import Groundwater, Reservoir
from wsimod.nodes.waste import Waste
from wsimod.nodes.wtw import FWTW, WWTW
from wsimod.orchestration.model import Model
os.environ["USE_PYGEOS"] = "0"
import geopandas as gpd
from matplotlib import pyplot as plt
from shapely.geometry import LineString
Load input data
# Select the root path for the data folder. Use the appropriate value for your case.
data_folder = os.path.join(os.path.abspath(""), "docs", "demo", "data")
input_fid = os.path.join(data_folder, "processed", "timeseries_data.csv")
input_data = pd.read_csv(input_fid)
input_data.loc[input_data.variable == "flow", "value"] *= constants.M3_S_TO_M3_DT
input_data.loc[input_data.variable == "precipitation", "value"] *= constants.MM_TO_M
input_data.date = pd.to_datetime(input_data.date)
data_input_dict = input_data.set_index(["variable", "date"]).value.to_dict()
data_input_dict = (
input_data.groupby("site")
.apply(lambda x: x.set_index(["variable", "date"]).value.to_dict())
.to_dict()
)
print(input_data.sample(10))
site date variable value 62987 thames 2010-03-17 magnesium 4.471429e-03 77189 oxford_land 2009-03-24 et0 2.000000e-03 34334 thames 2011-06-27 sulphate 6.219143e-02 54683 evenlode 2011-05-23 calcium 1.050625e-01 48005 cherwell 2013-01-14 potassium 3.700000e-03 18766 cherwell 2012-09-17 chloride 5.374429e-02 46041 thames 2011-08-25 sodium 3.747143e-02 47077 cherwell 2010-07-01 potassium 8.085714e-03 9125 ray 2010-03-27 silicon 4.007914e-03 74666 thames 2010-04-17 flow 1.209600e+06
/tmp/ipykernel_3899/946595242.py:12: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning. .apply(lambda x: x.set_index(["variable", "date"]).value.to_dict())
Input data is stored in dicts
print(data_input_dict["cherwell"][("boron", pd.to_datetime("2010-11-20"))])
6.985714285714286e-05
We select dates that are available in the input data
dates = input_data.date.unique()
dates = dates[dates.argsort()]
dates = [pd.Timestamp(x) for x in dates]
print(dates[0:10])
[Timestamp('2009-03-03 00:00:00'), Timestamp('2009-03-04 00:00:00'), Timestamp('2009-03-05 00:00:00'), Timestamp('2009-03-06 00:00:00'), Timestamp('2009-03-07 00:00:00'), Timestamp('2009-03-08 00:00:00'), Timestamp('2009-03-09 00:00:00'), Timestamp('2009-03-10 00:00:00'), Timestamp('2009-03-11 00:00:00'), Timestamp('2009-03-12 00:00:00')]
We can specify the pollutants. In this example we choose based on what pollutants we have input data for.
constants.POLLUTANTS = input_data.variable.unique().tolist()
constants.POLLUTANTS.remove("flow")
constants.POLLUTANTS.remove("precipitation")
constants.POLLUTANTS.remove("et0")
constants.NON_ADDITIVE_POLLUTANTS = ["temperature"]
constants.ADDITIVE_POLLUTANTS = list(
set(constants.POLLUTANTS).difference(constants.NON_ADDITIVE_POLLUTANTS)
)
constants.FLOAT_ACCURACY = 1e-11
print(constants.POLLUTANTS)
['temperature', 'silicon', 'fluoride', 'chloride', 'nitrate', 'sulphate', 'nitrogen', 'sodium', 'potassium', 'calcium', 'magnesium', 'boron']
Create nodes¶
For waste nodes, no parameters are needed, they are just the model outlet
thames_above_abingdon = Waste(name="thames_above_abingdon")
For junctions and abstraction locations, we can simply use the default nodes
farmoor_abstraction = Node(name="farmoor_abstraction")
evenlode_thames = Node(name="evenlode_thames")
cherwell_ray = Node(name="cherwell_ray")
cherwell_thames = Node(name="cherwell_thames")
thames_mixer = Node(name="thames_mixer")
For catchment nodes, we only need to specify the input data (as a dictionary format).
evenlode = Catchment(name="evenlode", data_input_dict=data_input_dict["evenlode"])
thames = Catchment(name="thames", data_input_dict=data_input_dict["thames"])
ray = Catchment(name="ray", data_input_dict=data_input_dict["ray"])
cherwell = Catchment(name="cherwell", data_input_dict=data_input_dict["cherwell"])
We can see that, even though we provided mimimal information (name and input data) each node comes with many predefined functions.
print(dir(evenlode))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'apply_overrides', 'blend_vqip', 'check_basic', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'data_input_dict', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'end_timestep_', 'extract_vqip', 'extract_vqip_c', 'get_avail', 'get_connected', 'get_data_input', 'get_direction_arcs', 'get_flow', 'in_arcs', 'in_arcs_type', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'node_mass_balance', 'out_arcs', 'out_arcs_type', 'pull_check', 'pull_check_abstraction', 'pull_check_basic', 'pull_check_deny', 'pull_check_handler', 'pull_distributed', 'pull_set', 'pull_set_abstraction', 'pull_set_deny', 'pull_set_handler', 'push_check', 'push_check_accept', 'push_check_basic', 'push_check_deny', 'push_check_handler', 'push_distributed', 'push_set', 'push_set_deny', 'push_set_handler', 'query_handler', 'reinit', 'route', 'sum_vqip', 't', 'total_in', 'total_out', 'total_to_concentration', 'unrouted_water', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c']
Freshwater treatment works¶
Each type of node uses different parameters (see API reference). Below we create a freshwater treatment works (FWTW)
oxford_fwtw = FWTW(
service_reservoir_storage_capacity=1e5,
service_reservoir_storage_area=2e4,
treatment_throughput_capacity=4.5e4,
name="oxford_fwtw",
)
Each node type has different types of functionality available
print(dir(oxford_fwtw))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_liquor_multiplier', '_percent_solids', 'apply_overrides', 'blend_vqip', 'calculate_volume', 'check_basic', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'current_input', 'data_input_dict', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'end_timestep_', 'extract_vqip', 'extract_vqip_c', 'get_connected', 'get_data_input', 'get_direction_arcs', 'get_excess_throughput', 'in_arcs', 'in_arcs_type', 'liquor', 'liquor_multiplier', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'node_mass_balance', 'out_arcs', 'out_arcs_type', 'percent_solids', 'previous_pulled', 'process_parameters', 'pull_check', 'pull_check_basic', 'pull_check_deny', 'pull_check_fwtw', 'pull_check_handler', 'pull_distributed', 'pull_set', 'pull_set_deny', 'pull_set_fwtw', 'pull_set_handler', 'push_check', 'push_check_accept', 'push_check_basic', 'push_check_deny', 'push_check_handler', 'push_distributed', 'push_set', 'push_set_deny', 'push_set_handler', 'query_handler', 'reinit', 'service_reservoir_initial_storage', 'service_reservoir_storage_area', 'service_reservoir_storage_capacity', 'service_reservoir_storage_elevation', 'service_reservoir_tank', 'solids', 'sum_vqip', 't', 'total_deficit', 'total_in', 'total_out', 'total_pulled', 'total_to_concentration', 'treat_current_input', 'treat_water', 'treated', 'treatment_throughput_capacity', 'unpushed_sludge', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c']
The FWTW node has a tank representing the service reservoirs, we can see that it has been initialised empty.
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
If we try to pull water from the FWTW, it responds that there is no water to pull.
print(oxford_fwtw.pull_check({"volume": 10}))
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
If we add in some water, we see the pull check responds that water is available.
oxford_fwtw.service_reservoir_tank.storage["volume"] += 25
print(oxford_fwtw.pull_check({"volume": 10}))
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 10.0}
When we set a pull request, we see that we successfully receive the water and the tank is updated.
reply = oxford_fwtw.pull_set({"volume": 10})
print(reply)
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 10.0} {'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
Land¶
We will now create a land node, it is a bit involved so you might want to skip ahead to demand, or check out the land node tutorial
Data inputs are a single dictionary
land_inputs = data_input_dict["oxford_land"]
print(land_inputs[("precipitation", pd.to_datetime("2010-11-20"))])
print(land_inputs[("et0", pd.to_datetime("2010-11-20"))])
print(land_inputs[("temperature", pd.to_datetime("2009-10-15"))])
0.0003 0.002 13.107142857142858
Assign some default pollutant deposition values (kg/m2/d)
pollutant_deposition = {
"boron": 100e-10,
"calcium": 70e-7,
"chloride": 60e-10,
"fluoride": 0.2e-7,
"magnesium": 6e-7,
"nitrate": 2e-9,
"nitrogen": 4e-7,
"potassium": 7e-7,
"silicon": 7e-9,
"sodium": 30e-9,
"sulphate": 70e-7,
}
Create two surfaces as a list of dicts
surface = [
{
"type_": "PerviousSurface",
"area": 2e7,
"pollutant_load": pollutant_deposition,
"surface": "rural",
"field_capacity": 0.3,
"depth": 0.5,
"initial_storage": 2e7 * 0.4 * 0.5,
},
{
"type_": "ImperviousSurface",
"area": 1e7,
"pollutant_load": pollutant_deposition,
"surface": "urban",
"initial_storage": 5e6,
},
]
Create the land node from these surfaces and the input data
oxford_land = Land(surfaces=surface, name="oxford_land", data_input_dict=land_inputs)
We can see the land node has various tanks that have been initialised empty
print(oxford_land.surface_runoff.storage)
print(oxford_land.subsurface_runoff.storage)
print(oxford_land.percolation.storage)
{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 0}
We can see the surfaces have also been initialised, although they are not empty because we provided 'initial_storage' parameters.
rural_surface = oxford_land.get_surface("rural")
urban_surface = oxford_land.get_surface("urban")
print("{0}-{1}".format("rural", rural_surface.storage))
print("{0}-{1}".format("urban", urban_surface.storage))
rural-{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 4000000.0} urban-{'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 5000000.0}
We can run a timestep of the land node with the 'run' command
oxford_land.t = pd.to_datetime("2012-12-22")
oxford_land.run()
We can see that the land and surface tanks have been updated
print(oxford_land.surface_runoff.storage)
print(oxford_land.subsurface_runoff.storage)
print(oxford_land.percolation.storage)
print("{0}-{1}".format("rural", rural_surface.storage))
print("{0}-{1}".format("urban", urban_surface.storage))
{'temperature': 3.521534008631931, 'silicon': 0.00020062235262918442, 'fluoride': 0.0005732067217976697, 'chloride': 0.0001719620165393009, 'nitrate': 5.732067217976698e-05, 'sulphate': 0.20062235262918443, 'nitrogen': 0.011464134435953396, 'sodium': 0.0008598100826965045, 'potassium': 0.020062235262918445, 'calcium': 0.20062235262918443, 'magnesium': 0.017196201653930095, 'boron': 0.00028660336089883487, 'volume': 12400.000000000002} {'temperature': 0.9722493642718524, 'silicon': 0.0017554455855053634, 'fluoride': 0.0050155588157296096, 'chloride': 0.0015046676447188828, 'nitrate': 0.000501555881572961, 'sulphate': 1.7554455855053634, 'nitrogen': 0.1003111763145922, 'sodium': 0.007523338223594414, 'potassium': 0.17554455855053633, 'calcium': 1.7554455855053634, 'magnesium': 0.1504667644718883, 'boron': 0.0025077794078648048, 'volume': 58900.0} {'temperature': 0.3349282031818326, 'silicon': 0.005868203814403644, 'fluoride': 0.016766296612581843, 'chloride': 0.005029888983774552, 'nitrate': 0.001676629661258184, 'sulphate': 5.868203814403645, 'nitrogen': 0.3353259322516368, 'sodium': 0.02514944491887276, 'potassium': 0.5868203814403645, 'calcium': 5.868203814403645, 'magnesium': 0.5029888983774553, 'boron': 0.008383148306290921, 'volume': 176700.00000000003} rural-{'temperature': 6.203473168254872, 'silicon': 0.1321757282474618, 'fluoride': 0.3776449378498909, 'chloride': 0.11329348135496725, 'nitrate': 0.037764493784989084, 'sulphate': 132.17572824746182, 'nitrogen': 7.552898756997817, 'sodium': 0.5664674067748363, 'potassium': 13.21757282474618, 'calcium': 132.17572824746182, 'magnesium': 11.329348135496726, 'boron': 0.18882246892494545, 'volume': 3980000.0} urban-{'temperature': 0.13343969249141666, 'silicon': 0.06999999999999999, 'fluoride': 0.2, 'chloride': 0.06, 'nitrate': 0.02, 'sulphate': 70.0, 'nitrogen': 4.0, 'sodium': 0.3, 'potassium': 7.0, 'calcium': 70.0, 'magnesium': 6.0, 'boron': 0.1, 'volume': 5104000.0}
Residential demand¶
The residential demand node requires population, per capita demand and a pollutant_load dictionary that defines how much (weight in kg) pollution is generated per person per day.
oxford = ResidentialDemand(
name="oxford",
population=2e5,
per_capita=0.15,
pollutant_load={
"boron": 500 * constants.UG_L_TO_KG_M3 * 0.15,
"calcium": 150 * constants.MG_L_TO_KG_M3 * 0.15,
"chloride": 180 * constants.MG_L_TO_KG_M3 * 0.15,
"fluoride": 0.4 * constants.MG_L_TO_KG_M3 * 0.15,
"magnesium": 30 * constants.MG_L_TO_KG_M3 * 0.15,
"nitrate": 60 * constants.MG_L_TO_KG_M3 * 0.15,
"nitrogen": 50 * constants.MG_L_TO_KG_M3 * 0.15,
"potassium": 30 * constants.MG_L_TO_KG_M3 * 0.15,
"silicon": 20 * constants.MG_L_TO_KG_M3 * 0.15,
"sodium": 200 * constants.MG_L_TO_KG_M3 * 0.15,
"sulphate": 250 * constants.MG_L_TO_KG_M3 * 0.15,
"temperature": 14,
},
data_input_dict=land_inputs,
)
# pollutant_load calculated based on expected effluent at WWTW
Reservoir¶
A reservoir node is used to make abstractions from rivers and supply FWTWs
farmoor = Reservoir(
name="farmoor", capacity=1e7, initial_storage=1e7, area=1.5e6, datum=62
)
distribution = Node(name="oxford_distribution")
Wastewater treatment works¶
Wastewater treatment works (WWTW) are nodes that can store sewage water temporarily in storm tanks, and reduce the pollution amounts in water before releasing them onwards to rivers.
oxford_wwtw = WWTW(
stormwater_storage_capacity=2e4,
stormwater_storage_area=2e4,
treatment_throughput_capacity=5e4,
name="oxford_wwtw",
)
Sewers¶
Sewer nodes enable water to transition between households and WWTWs, and between impervious surfaces and rivers or WWTWs. They use a timearea diagram to represent travel time, which assigns a specified percentage of water to take a specified duration to pass through the sewer node.
combined_sewer = Sewer(
capacity=4e6, pipe_timearea={0: 0.8, 1: 0.15, 2: 0.05}, name="combined_sewer"
)
Groundwater¶
Groundwater nodes implement a simple residence time to determine baseflow
gw = Groundwater(capacity=3.2e9, area=3.2e8, name="gw", residence_time=20)
Create a nodelist¶
To keep all the nodes in one place, we put them into a list
nodelist = [
thames_above_abingdon,
evenlode,
thames,
ray,
cherwell,
oxford,
distribution,
farmoor,
oxford_fwtw,
oxford_wwtw,
combined_sewer,
oxford_land,
gw,
farmoor_abstraction,
evenlode_thames,
cherwell_ray,
cherwell_thames,
thames_mixer,
]
print(nodelist)
[<wsimod.nodes.waste.Waste object at 0x7fbd56fdec50>, <wsimod.nodes.catchment.Catchment object at 0x7fbd567fdb50>, <wsimod.nodes.catchment.Catchment object at 0x7fbd567fda50>, <wsimod.nodes.catchment.Catchment object at 0x7fbd567f37d0>, <wsimod.nodes.catchment.Catchment object at 0x7fbd567f2890>, <wsimod.nodes.demand.ResidentialDemand object at 0x7fbd567e6890>, <wsimod.nodes.nodes.Node object at 0x7fbd5679aa10>, <wsimod.nodes.storage.Reservoir object at 0x7fbd5679e790>, <wsimod.nodes.wtw.FWTW object at 0x7fbd567f0c50>, <wsimod.nodes.wtw.WWTW object at 0x7fbd56799f10>, <wsimod.nodes.sewer.Sewer object at 0x7fbd56ea3c90>, <wsimod.nodes.land.Land object at 0x7fbd567e4510>, <wsimod.nodes.storage.Groundwater object at 0x7fbd567e7c90>, <wsimod.nodes.nodes.Node object at 0x7fbd5680a690>, <wsimod.nodes.nodes.Node object at 0x7fbd5680ad90>, <wsimod.nodes.nodes.Node object at 0x7fbd56809a50>, <wsimod.nodes.nodes.Node object at 0x7fbd56808c50>, <wsimod.nodes.nodes.Node object at 0x7fbd567ff110>]
# Standard simple arcs
fwtw_to_distribution = Arc(
in_port=oxford_fwtw, out_port=distribution, name="fwtw_to_distribution"
)
print(fwtw_to_distribution)
<wsimod.arcs.arcs.Arc object at 0x7fbd56b3d250>
As with nodes, even though we only gave it a few parameters, the arc comes with a lot built in
print(dir(fwtw_to_distribution))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'apply_overrides', 'arc_mass_balance', 'blend_vqip', 'capacity', 'compare_vqip', 'concentration_to_total', 'copy_vqip', 'ds_vqip', 'ds_vqip_c', 'empty_vqip', 'empty_vqip_predefined', 'end_timestep', 'extract_vqip', 'extract_vqip_c', 'flow_in', 'flow_out', 'get_excess', 'in_port', 'mass_balance', 'mass_balance_ds', 'mass_balance_in', 'mass_balance_out', 'name', 'out_port', 'preference', 'reinit', 'send_pull_check', 'send_pull_request', 'send_push_check', 'send_push_request', 'sum_vqip', 'total_to_concentration', 'v_change_vqip', 'v_change_vqip_c', 'v_distill_vqip', 'v_distill_vqip_c', 'vqip_in', 'vqip_out']
We can see that the arc links the two nodes
print(fwtw_to_distribution.in_port)
<wsimod.nodes.wtw.FWTW object at 0x7fbd567f0c50>
print(fwtw_to_distribution.out_port)
<wsimod.nodes.nodes.Node object at 0x7fbd5679aa10>
And that it has updated the nodes that it is connecting.
print(oxford_fwtw.out_arcs)
{'fwtw_to_distribution': <wsimod.arcs.arcs.Arc object at 0x7fbd56b3d250>}
print(distribution.in_arcs)
{'fwtw_to_distribution': <wsimod.arcs.arcs.Arc object at 0x7fbd56b3d250>}
We use arcs to send checks and requests..
print(fwtw_to_distribution.send_pull_check({"volume": 20}))
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
reply = fwtw_to_distribution.send_pull_request({"volume": 20})
print(reply)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 15.0}
They convey this information to the nodes that they connect to, which update their state variables
print(oxford_fwtw.service_reservoir_tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 0.0}
In turn, the arcs update their own state variables.
print(fwtw_to_distribution.flow_in)
print(fwtw_to_distribution.flow_out)
15.0 15.0
Arc parameters¶
Besides the in/out ports and names, arcs can have a parameter for their capacity, to limit the flow that may pass through it each timestep. A typical example would be on river abstractions to a reservoir
abstraction_to_farmoor = Arc(
in_port=farmoor_abstraction,
out_port=farmoor,
name="abstraction_to_farmoor",
capacity=5e4,
)
A bit more sophisticated is the 'preference' parameter. We use preference to express where we would prefer the model to send water. In this example, the sewer can send water to both the treatment plant and directly into the river. Of course we would always to prefer to send water to the plant, so we give it a very high preference. Discharging into the river should only be done if there is no capacity left at the WWTW, so we give the arc a very low preference.
sewer_to_wwtw = Arc(
in_port=combined_sewer, out_port=oxford_wwtw, preference=1e10, name="sewer_to_wwtw"
)
sewer_overflow = Arc(
in_port=combined_sewer,
out_port=thames_mixer,
preference=1e-10,
name="sewer_overflow",
)
Create arcs¶
Arcs are a bit less interesting than nodes because they generally don't capture complicated physical behaviours. So we just create all of them below.
evenlode_to_thames = Arc(
in_port=evenlode, out_port=evenlode_thames, name="evenlode_to_thames"
)
thames_to_thames = Arc(
in_port=thames, out_port=evenlode_thames, name="thames_to_thames"
)
ray_to_cherwell = Arc(in_port=ray, out_port=cherwell_ray, name="ray_to_cherwell")
cherwell_to_cherwell = Arc(
in_port=cherwell, out_port=cherwell_ray, name="cherwell_to_cherwell"
)
thames_to_farmoor = Arc(
in_port=evenlode_thames, out_port=farmoor_abstraction, name="thames_to_farmoor"
)
farmoor_to_mixer = Arc(
in_port=farmoor_abstraction, out_port=thames_mixer, name="farmoor_to_mixer"
)
cherwell_to_mixer = Arc(
in_port=cherwell_ray, out_port=thames_mixer, name="cherwell_to_mixer"
)
wwtw_to_mixer = Arc(in_port=oxford_wwtw, out_port=thames_mixer, name="wwtw_to_mixer")
mixer_to_waste = Arc(
in_port=thames_mixer, out_port=thames_above_abingdon, name="mixer_to_waste"
)
distribution_to_demand = Arc(
in_port=distribution, out_port=oxford, name="distribution_to_demand"
)
reservoir_to_fwtw = Arc(in_port=farmoor, out_port=oxford_fwtw, name="reservoir_to_fwtw")
fwtw_to_sewer = Arc(in_port=oxford_fwtw, out_port=combined_sewer, name="fwtw_to_sewer")
demand_to_sewer = Arc(in_port=oxford, out_port=combined_sewer, name="demand_to_sewer")
land_to_sewer = Arc(in_port=oxford_land, out_port=combined_sewer, name="land_to_sewer")
land_to_gw = Arc(in_port=oxford_land, out_port=gw, name="land_to_gw")
garden_to_gw = Arc(in_port=oxford, out_port=gw, name="garden_to_gw")
gw_to_mixer = Arc(in_port=gw, out_port=thames_mixer, name="gw_to_mixer")
Again, we keep all the arcs in a tidy list together.
arclist = [
evenlode_to_thames,
thames_to_thames,
ray_to_cherwell,
cherwell_to_cherwell,
thames_to_farmoor,
farmoor_to_mixer,
cherwell_to_mixer,
wwtw_to_mixer,
sewer_overflow,
mixer_to_waste,
abstraction_to_farmoor,
distribution_to_demand,
demand_to_sewer,
land_to_sewer,
sewer_to_wwtw,
fwtw_to_sewer,
fwtw_to_distribution,
reservoir_to_fwtw,
land_to_gw,
garden_to_gw,
gw_to_mixer,
]
Mapping¶
Remember, WSIMOD is an integrated model. Because it covers so many different things, it is very easy to make mistakes. Thus it is always good practice to plot your data!
Below we load the node location data and create arcs from the information in the arclist.
location_fn = os.path.join(data_folder, "raw", "points_locations.geojson")
nodes_gdf = gpd.read_file(location_fn).set_index("name")
arcs_gdf = []
for arc in arclist:
arcs_gdf.append(
{
"name": arc.name,
"geometry": LineString(
[
nodes_gdf.loc[arc.in_port.name, "geometry"],
nodes_gdf.loc[arc.out_port.name, "geometry"],
]
),
}
)
arcs_gdf = gpd.GeoDataFrame(arcs_gdf, crs=nodes_gdf.crs)
Because we converted the information as GeoDataFrames, we can simply plot them below
f, ax = plt.subplots()
arcs_gdf.plot(ax=ax)
nodes_gdf.plot(color="r", ax=ax, zorder=10)
<Axes: >
Orchestration¶
Orchestration is making the simulation happen by calling functions in the nodes. These functions simulate physical behaviour within the node, and cause pulls/pushes to happen which in turn triggers physical behaviour in other nodes.
Orchestrating an individual timestep¶
We will start below by manually orchestrating a single timestep.
We start by setting the date, so that every node knows what forcing data to read for this timestep.
date = dates[0]
for node in nodelist:
node.t = date
print(date)
print(oxford_fwtw.t)
2009-03-03 00:00:00 2009-03-03 00:00:00
We can see the service reservoirs are empty but the supply reservoir is not!
print(oxford_fwtw.service_reservoir_tank.storage)
print(farmoor.tank.storage)
{'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 0.0} {'temperature': 0, 'silicon': 0, 'fluoride': 0, 'chloride': 0, 'nitrate': 0, 'sulphate': 0, 'nitrogen': 0, 'sodium': 0, 'potassium': 0, 'calcium': 0, 'magnesium': 0, 'boron': 0, 'volume': 10000000.0}
If we call the FWTW's treat_water function it will pull water from the supply reservoir and update its service reservoirs
oxford_fwtw.treat_water()
print(oxford_fwtw.service_reservoir_tank.storage)
print(farmoor.tank.storage)
{'temperature': 0.0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 43641.0} {'temperature': 0, 'silicon': 0.0, 'fluoride': 0.0, 'chloride': 0.0, 'nitrate': 0.0, 'sulphate': 0.0, 'nitrogen': 0.0, 'sodium': 0.0, 'potassium': 0.0, 'calcium': 0.0, 'magnesium': 0.0, 'boron': 0.0, 'volume': 9955000.0}
This information is tracked in the arcs that enter the FWTW
print(oxford_fwtw.in_arcs)
{'reservoir_to_fwtw': <wsimod.arcs.arcs.Arc object at 0x7fbd90a4bb10>}
print(reservoir_to_fwtw.flow_in)
print(reservoir_to_fwtw.flow_out)
45000.0 45000.0
Although none of that water has yet entered the distribution network (only some small flow from the earlier demonstration)
print(fwtw_to_distribution.flow_in)
15.0
That is because no water consumption demand had yet been generated.
If we call the demand node's create_demand function we see that the distribution arc becomes utilised.
oxford.create_demand()
print(fwtw_to_distribution.flow_in)
30015.0
We also see that this gets pushed onwards into the sewer system
print(demand_to_sewer.flow_in)
30000.0
Many nodes have functions intended to be called during orchestration. These functions are described in the documentation. For example, we see in the Land node API reference that the 'run' function is intended to be called from orchestration.
oxford_land.run()
Below we call the functions for other nodes
# Discharge GW
gw.distribute()
# Discharge sewers (pushed to other sewers or WWTW)
combined_sewer.make_discharge()
# Run WWTW model
oxford_wwtw.calculate_discharge()
# Make abstractions
farmoor.make_abstractions()
# Discharge WW
oxford_wwtw.make_discharge()
# Route catchments
evenlode.route()
thames.route()
ray.route()
cherwell.route()
Ending a timestep¶
Because mistakes happen, it is essential to carry out mass balance testing. Each node has a mass balance function that can be called. We see a mass balance violation resulting from the demonstration with the FWTW earlier.
for node in nodelist:
in_, ds_, out_ = node.node_mass_balance()
mass balance error for volume of 15.0 in oxford_distribution mass balance error for volume of -15.0 in oxford_fwtw
We should also call the end_timestep function in nodes and arcs. This is important for mass balance testing and capturing the behaviour of some dynamic processes in nodes.
for node in nodelist:
node.end_timestep()
for arc in arclist:
arc.end_timestep()
Model object¶
Of course it would be a massive pain to manually orchestrate every timestep. So instead we store node and arc information in a model object that will do the orchestration for us.
Because we have already created the nodes/arcs above, we simply need to add the instantiated lists above.
my_model = Model()
my_model.add_instantiated_nodes(nodelist)
my_model.add_instantiated_arcs(arclist)
my_model.dates = dates
The model object lets us reinitialise the nodes/arcs, and run all of the orchestration with a 'run' function.
my_model.reinit()
flows, _, _, _ = my_model.run()
0%| | 0/1456 [00:00<?, ?it/s]
2%|▏ | 33/1456 [00:00<00:04, 323.53it/s]
5%|▍ | 66/1456 [00:00<00:04, 323.08it/s]
7%|▋ | 99/1456 [00:00<00:04, 321.91it/s]
9%|▉ | 132/1456 [00:00<00:04, 322.11it/s]
11%|█▏ | 165/1456 [00:00<00:04, 320.64it/s]
14%|█▎ | 198/1456 [00:00<00:03, 319.34it/s]
16%|█▌ | 230/1456 [00:00<00:03, 318.44it/s]
18%|█▊ | 262/1456 [00:00<00:03, 315.80it/s]
20%|██ | 294/1456 [00:00<00:03, 311.79it/s]
22%|██▏ | 326/1456 [00:01<00:03, 311.07it/s]
25%|██▍ | 358/1456 [00:01<00:03, 311.17it/s]
27%|██▋ | 390/1456 [00:01<00:03, 311.60it/s]
29%|██▉ | 422/1456 [00:01<00:03, 312.67it/s]
31%|███ | 454/1456 [00:01<00:03, 312.94it/s]
33%|███▎ | 486/1456 [00:01<00:03, 313.33it/s]
36%|███▌ | 518/1456 [00:01<00:02, 313.96it/s]
38%|███▊ | 550/1456 [00:01<00:02, 310.40it/s]
40%|███▉ | 582/1456 [00:01<00:02, 310.93it/s]
42%|████▏ | 614/1456 [00:01<00:02, 311.79it/s]
44%|████▍ | 646/1456 [00:02<00:02, 312.14it/s]
47%|████▋ | 678/1456 [00:02<00:02, 312.79it/s]
49%|████▉ | 710/1456 [00:02<00:02, 312.32it/s]
51%|█████ | 742/1456 [00:02<00:02, 312.78it/s]
53%|█████▎ | 774/1456 [00:02<00:02, 313.60it/s]
55%|█████▌ | 806/1456 [00:02<00:02, 312.04it/s]
58%|█████▊ | 838/1456 [00:02<00:01, 312.39it/s]
60%|█████▉ | 870/1456 [00:02<00:01, 312.71it/s]
62%|██████▏ | 902/1456 [00:02<00:01, 313.97it/s]
64%|██████▍ | 934/1456 [00:02<00:01, 313.65it/s]
66%|██████▋ | 966/1456 [00:03<00:01, 314.25it/s]
69%|██████▊ | 998/1456 [00:03<00:01, 314.46it/s]
71%|███████ | 1030/1456 [00:03<00:01, 313.60it/s]
73%|███████▎ | 1062/1456 [00:03<00:01, 313.69it/s]
75%|███████▌ | 1094/1456 [00:03<00:01, 312.30it/s]
77%|███████▋ | 1126/1456 [00:03<00:01, 313.51it/s]
80%|███████▉ | 1158/1456 [00:03<00:00, 312.04it/s]
82%|████████▏ | 1190/1456 [00:03<00:00, 311.90it/s]
84%|████████▍ | 1222/1456 [00:03<00:00, 310.58it/s]
86%|████████▌ | 1254/1456 [00:04<00:00, 310.20it/s]
88%|████████▊ | 1286/1456 [00:04<00:00, 310.21it/s]
91%|█████████ | 1318/1456 [00:04<00:00, 310.68it/s]
93%|█████████▎| 1350/1456 [00:04<00:00, 309.01it/s]
95%|█████████▍| 1382/1456 [00:04<00:00, 309.78it/s]
97%|█████████▋| 1414/1456 [00:04<00:00, 309.90it/s]
99%|█████████▉| 1445/1456 [00:04<00:00, 309.53it/s]
100%|██████████| 1456/1456 [00:04<00:00, 312.90it/s]
The model outputs flows as a dictionary which can be converted to a dataframe
flows = pd.DataFrame(flows)
print(flows.sample(10))
arc flow time temperature \ 14866 garden_to_gw 0.000000e+00 2011-02-08 0.000000 9493 thames_to_thames 6.004800e+05 2010-05-29 17.500000 5733 evenlode_to_thames 1.028160e+06 2009-12-01 6.400000 926 ray_to_cherwell 5.348160e+04 2009-04-16 11.300000 22293 demand_to_sewer 3.000000e+04 2012-01-28 9.951429 27259 thames_to_thames 6.445440e+05 2012-09-21 12.900000 5101 garden_to_gw 0.000000e+00 2009-10-31 0.000000 8935 abstraction_to_farmoor 3.093421e+04 2010-05-02 12.002791 14066 reservoir_to_fwtw 3.093421e+04 2011-01-01 10.160575 19495 wwtw_to_mixer 3.092784e+04 2011-09-17 17.547419 silicon fluoride chloride nitrate sulphate \ 14866 0.000000 0.000000 0.000000 0.000000 0.000000 9493 3164.838418 77.204571 19273.692343 3599.200826 28565.691429 5733 8515.015488 185.068800 17540.409600 5774.406501 33106.752000 926 186.936019 10.696320 3191.068800 494.976433 6248.433600 22293 600.000000 12.000000 5400.000000 1800.000000 7500.000000 27259 4144.869101 80.568000 18234.149760 4083.324460 26561.658240 5101 0.000000 0.000000 0.000000 0.000000 0.000000 8935 126.143946 3.507554 839.126865 200.247002 1281.420599 14066 175.706845 3.520549 901.642239 160.385447 1342.825953 19495 25.766673 0.532674 214.081045 65.638948 300.739756 nitrogen sodium potassium calcium magnesium \ 14866 0.000000 0.000000 0.000000 0.000000 0.000000 9493 3671.506286 11383.385143 2118.836571 55827.483429 2873.725714 5733 5613.753600 10178.784000 3907.008000 90786.528000 4009.824000 926 493.813440 2720.430720 559.774080 7444.638720 415.373760 22293 1500.000000 6000.000000 900.000000 4500.000000 900.000000 27259 4672.944000 11408.428800 2255.904000 68128.300800 3126.038400 5101 0.000000 0.000000 0.000000 0.000000 0.000000 8935 210.694007 518.730339 112.927315 2991.826073 132.977670 14066 169.667580 567.269204 115.697907 2720.555425 128.808629 19495 56.054048 222.880275 34.445803 248.364798 34.823157 boron 14866 0.000000 9493 25.649074 5733 43.182720 926 7.380461 22293 15.000000 27259 24.073718 5101 0.000000 8935 1.308710 14066 1.327732 19495 0.549607
Validation plots¶
Of course we shouldn't trust a model without proof, and this is doubly true for an integrated model whose errors may easily propagate.
Thankfully we have rich in-river water quality sampling in Oxford that we can use for validation
We load and format this data for dates and pollutants that overlap with what we have simulated
mixer_val_df = pd.read_csv(os.path.join(data_folder, "raw", "mixer_wims_val.csv"))
mixer_val_df.date = pd.to_datetime(mixer_val_df.date)
mixer_val_df = mixer_val_df.loc[mixer_val_df.date.isin(dates)]
val_pollutants = mixer_val_df.variable.unique()
mixer_val_df = mixer_val_df.pivot(index="date", columns="variable", values="value")
We get rid of the first day of flows because our tanks were initialised empty and will not be informative
flows = flows.loc[flows.time != dates[0]]
We convert our flows, which are simulated in kg/d into a concentration value (kg/m3/d).
flows_plot = flows.copy()
# Convert to KG/M3
for pol in set(val_pollutants):
if pol != "temperature":
flows_plot[pol] /= flows_plot.flow
We pick the model outlet as a validation location and make a pretty plot - fantastic!
plot_arc = "mixer_to_waste"
f, axs = plt.subplots(val_pollutants.size, 1)
for pol, ax in zip(val_pollutants, axs):
ax.plot(
flows_plot.loc[flows_plot.arc == plot_arc, [pol, "time"]].set_index("time"),
color="b",
label="simulation",
)
ax.plot(mixer_val_df[pol], ls="", marker="o", color="r", label="spot sample")
ax.set_ylabel(pol)
plt.legend()
<matplotlib.legend.Legend at 0x7fbd4bf5e4d0>