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ABSTRACT

Multi-channel speech enhancement, which tackles signal
input from microphone arrays, has been a widely investi-
gated research field for many years. Traditional beamforming
methods, like Minimum Variance Distortionless Response
(MVDR), have been popular for solving this task. In recent
years, researchers have also tried to solve the task with a
purely neural system. In this paper, we are combining tra-
ditional beamforming, monaural speech enhancement, and
speech separation to build a three stage system to solve the
SPEAR challenge. We show that with strong diffusion noise
from all directions, the combination of beamforming and
monaural speech enhancement system is efficient in both
target direction enhancement and background noise suppres-
sion.

Index Terms— Speech enhancement, speech separation,
beamforming, AR/VR

1. INTRODUCTION

Multi-channel speech enhancement and separation is a very
popular research topic due to its wide application for smart
home, virtual conference, and wearable devices. Many meth-
ods in this field are prior to the deep learning era [1, 2, 3].
While deep learning methods shows amazing results in mul-
tiple single-channel speech tasks, how to incorporate multi-
channel speech processing with deep learning becomes a big
research problem.

Single-channel speech enhancement is a very developed
area which aims to do spectral filtering to remove noise from
speech. A few speech enhancement challenges [4, 5, 6, 7]
are held to faciliate this task. [8] directly uses a convolutional
recurrent network like achitecture to estimate a mask on time-
frequency domain. Another track of methods like RNNnoise
[9], DeepFilterNet2 [10], and Percepnet [11] aims to do de-
noising on the spectral envelop, and then do harmonics en-
hancement. Since the task is for human to perceive speech
better, these methods all try to prevent distortion in the en-
hanced speech, while removing the noise. Although this task
is only single channel, but multi-channel speech enhancement
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can borrow ideas from here for spectral filtering when noise
is coming from the same direction with the target speech.

Single channel speech separation and target speech ex-
traction aims to separate or extract certain speech from over-
lapped speech. After TASNET [12], time domain methods are
prevalent to solve this task and the evaluation metric is mostly
only SI-SNR. Later, [13, 14, 15] have superior performance
when noise and reverb are not there. However, time domain
methods suffer from reverberation severely and is not robust
against noise.

Multi-channel speech enhancement aims to denoise
speech from multichannel microphone array recordings. This
task attracts lots of attention recently because its wide appli-
cation in smart home and smart glasses. [16] tries to use bi-
nary search to cut the spatial regions into smaller and smaller
pieces each time step and output sounds from each divided
region each step. [17, 18] uses a deep-learning learned mask
to estimate the noise covariance matrix and target steering
vector adaptively to do MVDR. ADL-MVDR [19, 20] further
uses RNN to simulate matrix inversion to prevent the numeri-
cal instability. This method achieves decent performance and
makes sure no distortion is there for the target speech.

Since smart glasses and video conferencing all have cam-
eras, multi-modal speech separation and enhancement aims
to further utilize visual information like lip movements for
speech enhancement. [21, 22, 23, 24, 25, 26] all use lip move-
ment to aid speech separation or target speech extraction. [27,
19] use the video information to infer the direction of arrival
of target speakers for better beamforming.

More recently, wearable sensing has attracted lots of at-
tention due to the hit of augmented reality and metaverse.
Clearbuds [28] utilizes the binaural mics to enhance phone
call speech quality. [29] tries to separate surrounding speech
using a pair of binaural earphones. [30] tries to separate
voices by different spatial regions for augmented hearing.
In our work, are trying to solve the SPEAR challenge [31],
which tries to enhance speech with microphones on a smart
glass. Six microphones’ recording and all target speakers’
direction of arrival can be used. The noise condition is in-
tense diffusion noise from all directions. On the same glass,
[32] tries to use these multi-microphones for spatially selec-
tive active noise cancellation. Our work complements the
ANC work in the way that it’s not only spatially selective, but
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Fig. 1: A. Overall structure of enhancement pipeline. B. Structure of the Monaural Speech Enhancement Module. C. Structure
of the Speech Separator Module. This diagram is a demonstration for 3 speakers case, but the pipeline works for any number
of speakers as in the case of the dataset.

also spectrally selective, in the cost of some distortion to the
speech, 50ms of latency, and more computation. We consider
real-world diffusion noise in an extreme manner.

In this paper, we propose to combine traditional beam-
forming, monaural speech ennhancement, and speech sepa-
ration to solve the spear challenge. We apply a step by step
approach to ensure the robustness of the overall model. It in-
cludes three stages, beamforming, single-channel speech en-
hancement, multi-speaker speech separation.

2. MODEL DESCRIPTION

In this section, we presented proposed three-stage model as
shown in Figure 1. The pipeline consists of a beamformer, a
monaural denoiser, and a speech separator.

2.1. MVDR Beamformer

The first part of our pipeline is a traditional super-directive
Minimum Variance Distortionless Response (MVDR) Beam-
former provided by SPEAR [31] as baseline, which can be

formulated as

wMVDR =argmin
w

∥wHn∥2 (1)

subject to wHv = 1

i.e. wMVDR = argmin
w

wHϕNNw

subject to wHv = 1

(2)

where ϕNN is the spatial covariance matrix of the diffusion
noise n(f), which assumes isotropic uniform energy. The
solution to this problem is given by,

wMVDR = (vHϕ−1
NNv)−1(ϕ−1

NNv) (3)

The beamformer will filter the signal in the target direction
and suppress the other interference speakers. It receives a
mixture signal and n steering vectors as input, and output
n binaural beamformed signal corresponding n target direc-
tions.

2.2. Monaural Denoiser

The second stage of the pipeline is a monaural denoiser which
takes the output of the beamformer and processes it for speech
enhancement. Since the noise in the SPEAR dataset is pri-
marily diffusion noise, the beamformer with 6 mics can only
bring up the SNR with a limited amount. At this step, we



apply a monaural denoiser to both channels from the beam-
former output to further suppress the noise.

We started with the pre-trained model of DeepFilterNet2
[10], which is a monaural speech enhancement system which
does denoising on the spectral envelop. However, we fine-
tune this pre-trained network on the MVDR output of SPEAR
training set. We adopt a multi-resolution compressive loss,
the same as in deepFilterNet[33] and for each STFT resolu-
tion, the loss can be formulated as the following:

L =
1

ITF

∑
i

∑
t

∑
f

∥|Y
′

i (t, f)|c − |S
′

i(t, f)|c∥2 (4)

+ ∥|Y
′

i (t, f)|cejϕY (t,f) − |S
′

i(t, f)|cejϕS(t,f)∥2 (5)

where Y, S are the STFT spectrogram of the predicted and de-
sired signal, and c is a compressive factor, we use 0.3 for fine-
tuning DeepfilterNet2. I, T, F are number of speakers, num-
ber of frames, and number of frequency bins, respectively.
The loss is only calculated at frames where only the target
speaker is speaking, intending to ensure the model is only
learning denoising at this stage. The multi-resolution loss is
the mean of this loss on STFTs with different resolutions or
window sizes. The window sizes include 5ms, 10ms, 20ms,
and 40ms.

2.3. Speech Separator

At the final stage of the pipeline, we designed a speech sepa-
rator to separate the target speaker from the other interference
speakers, consisting of two temporal convolutional network
modules and one transformer module. Firstly, We extract
magnitude and cross-speaker correlation as features from the
output of the denoiser, and feed the feature embedding into
a TCN module. The output of the TCN module will then go
through a causal transformer encoder module for contextual-
ization. The embedding generated from the transformer mod-
ule will be guided by learning the voice activity detection for
each speaker and also passed into the second TCN module.
The output of the second TCN module will be considered as
a magnitude mask to be applied to the monaural enhanced
spectrogram. The loss at the separator consists of a VAD loss
and a multi-resolution compressive loss (only on the magni-
tude). For one single resolution, the loss can be formulated as
the following:

Lcompress =
1
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∑
i

∑
t

∑
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∥|Y
′

i (t, f)|c − |S
′

i(t, f)|c∥2

(6)

Lsep = Lmulti−res + λLV AD (7)

The multi-resolution compressive loss is same as in section
2.2 but is only calculated for spectrogram magnitude and for
frames when the target speaker is active. The VAD loss is a
simple binary cross entropy. λ is selected to be 0.005 and c is
selected as 0.6 here.

2.4. Submissions

We made five submissions to the challenge, which all have
similar methods shown in previous sections. Submission one
and two only does separation for frequencies below 5kHz, and
the difference is in that they have different floor factor when
applying Deepfilternet’s mask. Basically when the denoiser
applies the mask, we clamp the mask value’s magnitude to be
all bigger than a small value. There are two masks in Deep-
filternet2 (ERB mask and complex mask), so we have these
two floor factors. In submission one, three, four and five, we
use 0.1 and 0.05, while in submission two we use 0 and 0.
For submission three, the separation is still done on frequen-
cies lower than 5kHz but the method is a traditional ideal real
mask based, conservative approach, similar in [34]. The sep-
aration loss is MSE loss on the idea real mask, and we ap-
ply the mask using the postfilter approach in [34]. Finally,
submission four and five’s separation models are for frequen-
cies below 16kHz. Submission five exactly follows the sep-
aration loss above, but submission four applies another L4
multi-resolution compressive loss on frames where at least
one interference speaker is speaking and the target speaker
is speaking. This intends to let the network focus more on
multi-speaker separation.

3. CONCLUSION

This paper described our method for solving the SPEAR
(Speech Enhancement for Augmented Reality) challenge,
which is a real-time speech enhancement task on a glass,
considering diffusion noise and overlapped speakers. We pro-
pose to combine traditional beamforming, monaural speech
enhancement, and speech separation to solve this task. We
successfully enhanced the speech so that the original hard-to-
hear speech could be understood much easier.
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