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ABSTRACT

The goal of the Speech enhancement for augmented re-
ality (SPEAR) challenge is to obtain the best possible en-
hancement of the target binaural signal with head-worn mi-
crophone arrays where positional information is available to
the algorithm. To solve this problem, we adopt low-latency
DNN based speech enhancement based on LSTM-ResUNet,
superdirective beamformer, and TRU-Net.

Index Terms— Frame-online speech enhancement, mi-
crophone array processing, deep learning, signal processing,
beamforming.

1. INTRODUCTION

Array microphone-based speech signal processing are ap-
plied in many fields. In hearing aids, speech enhancement and
separation is important tasks. Processing the hearing aid sig-
nal, such as a head-worn microphone array, is difficult be-
cause the relative positions of the array and sound sources
change rapidly.

SPEAR Challenge provides head-worn microphone array
signals to separate and enhance each target speaker [1]. The
data consists of conversations between 3 to 6 people in a typi-
cal noisy restaurant. Real recorded data of SPEAR Challenge
is from the EasyCom database [2]. Simulation data of SPEAR
Challenge is generated using Tascar [3]. The goal of this chal-
lenge is to maximize the enhancement of the target signal
from the array’s binaural microphone. The enhanced target
signal is evaluated in the Signal to Noise Ratio (SNR), Speech
Intelligibility (SI), and Speech Quality (SQ) categories.

To achieve the goal of SPEAR challenge, we adopt
low-latency DNN-based speech enhancement, superdirec-
tive beamformer followed by post-filtering. The DNN-based
speech enhancement model is U-Net [4] based speech en-
hancement model using IRM [5] with 40ms algorithms la-
tency. The superdirective beamformer generates a diffuse
covariance matrix from microphone positions and separate
speech signals. TRU-Net [6] is a voice enhancement model
that separates frequency and time axis calculations from the
2D-CNN-based U-Net model and makes it lightweight and
operates online.

2. MODEL DESCRIPTION

2.1. Problem Definition

The physical model of given input signal can be formu-
lated in the Short-Time Fourier Transform (STFT) domain as

Y(t, f) =

N∑
n=1

Xn(t, f) +V(t, f)

=

N∑
n=1

[Sn(t, f) +Hn(t, f)] +V(t, f),

(1)

where Y(t, f), X(t, f), V(t, f), S(t, f), and H(t, f)
denote the STFT vectors of the mixture, reverberant target
speech, reverberant noise, target speech and early reflection
of target speech, late reflection of target speech at time t
and frequency f for each target speaker n among N people,
respectively.

And the target speech to be extracted can be formulated
as

Ŝn(t, f) = f(X, θn, ϕn), (2)

where Ŝn(t, f) is estimated speech of target speaker n us-
ing given azimuth θn and elevation ϕn.

2.2. Primary DNN-based speech enhancement

2.2.1. Network architecture

Inspired by LSTM-ResUNet[7], we adopt a low-latency
speech enhancement model. To prevent distortion in phase
components for better linear spatial filter performance, we
perform primary DNN-based single-channel speech enhance-
ment on the magnitude domain. Speech enhancement was
performed on each channel separately with the same parame-
ters.

As illustrated in Fig.1, the primary model is U-Net with
long short-term memory(LSTM) bottleneck. And the struc-
tures of each block are described in Fig. 2. Each encoder con-
tains two-dimensional(2D) convolution, batch normalization
(BN), parametric ReLU (PReLU), and residual block. Chan-
nels, kernel size, and stride of five encoders are 30,(3,1),and
(2,1) respectively. Likewise, each decoder consists of 2D



Fig. 1: Network architecture of Primary speech enhancement
Model.

deconvolution, batch normalization (BN), parametric ReLU
(PReLU), and residual block. Channels, stride, and padding
of five decoders are 30,(2,1), (1,0) respectively. Kernel sizes
of each decoder are (4,1), (4,1),(4,1), (5,1), and (4,1). The
input layer consists of 2D convolution, LeakyReLU, and BN
followd by Layer Normalization. The output Layer contains
2D deconvolution and sigmoid activation.

2.2.2. Residual block

Each residual block in the encoder and decoder contains
five depthwise separable 2D convolutions(DSConv). The ker-
nel size of depthwise convolution is (3,3) which has 8ms look
ahead. The dilation rates are 1, 2, 4, 8, and 16, respectively.

2.2.3. Algorithmic latency

Because most component of human speech resides under
8kHz, we resampled the input audio of the primary model
as 16kHz. A 512-point Discrete Fourier Transform(DFT) is
applied to extract 257-dimensional STFT coefficients at each
frame. The window size of the model is 32ms with 8ms look
ahead, which makes algorithmic latency 40ms.

2.2.4. Experiment

SPEAR challenge dataset is used as training and valida-
tion. Each channel of data is separately used as input and ref-
erence. We adopt the loss function form of Mean Square Er-

(a) Encoder / Decoder

(b) skip connection (c) Residual Block

Fig. 2: Block structures.

ror(MSE). The Adam algorithm is used to optimize the mod-
els.

2.3. Superdirective beamformer

The superdirective beamformer is one of the fixed beam-
formers that obtains the maximum gain against diffuse noise.
The baseline for the SPEAR challenge generates an isotropic
diffuse covariance matrix from acoustic transfer functions
for superdirective beamformer. We generate the spherically
isotropic noise field from microphone positions [2]. Since
microphones 5 and 6 are on each ear, we use channels 1,2,3,
and 4 to avoid a mismatch of microphone position.

The diffuse covariance matrix is calculated as

[R(ω)]i,j =
sin(ωdi,j)

ωdi,j
, (3)

where ω is angular frequency and di,j is the delay between
i-th and j-th microphones. Therefore, the beamformer weight
of the direction azimuth θ and elevation ϕ can be obtained by

w(ω, θ, ϕ) =
(R(ω) + δI)

−1
h̄(ω, θ, ϕ)

h̄H(ω, θ, ϕ) (R(ω) + δI)
−1

h̄(ω, θ, ϕ)
, (4)

where
h̄(ω, θ, ϕ) = h(ω, θ, ϕ)/href (ω, θ, ϕ). (5)



h̄(ω, θ, ϕ) is normalized steering vector and δ is diagonal
loading parameter. h(ω, θ, ϕ) is the acoustic transfer function
of each channel and href (ω, θ, ϕ) is the acoustic transfer
function of reference channel for each binaural channel.

STFT parameters are the same as in Section 2.1. The in-
put data is downsampled as 16kHz. The 512-point DFT is ap-
plied. The window size of the model is 32ms with 8ms look
ahead, which makes algorithmic latency 40ms.

2.4. Post DNN based speech enhancement

Fig. 3: Network architecture of TRU-Net.

2.4.1. Network architecture

Inspired by TRU-Net, we adopt a low-latency speech en-
hancement model. The architecture is designed to enable ef-
ficient decoupling of the frequency-axis and time-axis com-
putations, which makes the network fast enough to process a
single frame in real-time.

TRU-Net is based on U-Net architecture, except that the
convolution kernel does not span the time-axis. Therefore, it
can be considered a frequency-axis U-Net with 1D Convo-
lutional Neural Networks (CNNs) and recurrent neural net-
works in the bottleneck layer. The encoder is composed of
1D Convolutional Neural Network (1DCNN) blocks and a
Frequency-axis Gated Recurrent Unit (FGRU) block. Each
1D-CNN block is a sequence of pointwise convolution and
depthwise convolution similar to [8], except the first layer,
which uses the standard convolution operation without a pre-
ceding pointwise convolution. To spare the network size, we
use six 1D-CNN blocks, which downsample the frequency-
axis size from 256 to 16 using strided convolutions. This re-
sults in a small receptive field which may be detrimental to the
network performance. To increase the receptive field, we use a
bi-directional GRU layer [9] along the frequency-axis instead
of stacking more 1D-CNN blocks. That is, the sequence of 16
vectors from 1D-CNN blocks is passed into the bi-directional
GRU(FGRU) to increase the receptive field and share the in-
formation along the frequency-axis. Pointwise convolution,
batch normalization, and rectified linear unit (ReLU) are used

after the FGRU layer, composing an FGRU block. We used
64 hidden dimensions for each forward and backward FGRU
cell.

The decoder is composed of a Time-axis Gated Recurrent
Unit (TGRU) block and 1D Transposed Convolutional Neu-
ral Network (1D-TrCNN) blocks. The output of the encoder
is passed into a unidirectional GRU layer(TGRU layer) to ag-
gregate the information along the timeaxis. While one can ap-
ply different GRU cells to each frequency-axis index of the
encoder output, we shared the same cell on each frequency-
axis index to save the number of parameters. A pointwise con-
volution, BN, and ReLU follow the TGRU layer, composing a
TGRU block. We used 128 hidden dimensions for the TGRU
cell. Finally, 1D-TrCNN blocks are used to upsample the out-
put from the TGRU block to the original spectrogram size.
The 1D-TrCNN block takes two inputs - 1. a previous layer
output, 2. a skipped tensor from the encoder at the same hier-
archy - and upsamples them as follows. First, the two inputs
are concatenated and projected to a smaller channel size (256
-> 64) using a pointwise convolution. Then, 1D transposed
convolution is used to upsample the compressed information.
This procedure saves both the number of parameters and com-
putation compared to the usual U-Net implementation where
the two inputs are concatenated and upsampled immediately
using the transposed convolution operation. Every convolu-
tion operation used in the encoder and decoder is followed by
BN and ReLU.

Channels, kernel size, and stride of six 1D-CNN in en-
coders are (64,5,2), (128,3,1), (128,5,2), (128,3,1), (128,5,2),
and (128,3,2), respectively. Likewise, six 1D-TrCNN in de-
coders are (128,3,2), (64,5,2), (64,3,1), (64,5,2), (64,3,1), and
(10,5,2), respectively. Note that the pointwise convolution op-
erations share the same output channel configuration with the
exception that kernel size and strides are both 1. The overview
of TRU-Net and the number of parameters used for 1D-CNN
blocks, FGRU blocks, TGRU blocks, and 1DTrCNN blocks
are shown in Fig. 3.

2.4.2. TRUNet preprocess

As inputs of TRUNet, STFT magnitude, phase and PCEN
were used. Per-channel energy normalization (PCEN) [10]
combines both dynamic range compression and automatic
gain control, which reduce the variance of foreground loud-
ness and suppress background noise when applied to a spec-
trogram [11]. PCEN is also suitable for online inference
scenarios as it includes a temporal integration step, which is
essentially a first-order infinite impulse response filter that
depends solely on a previous input frame. In this work, we
employ the trainable version of PCEN.

2.4.3. Algorithmic latency

For the same reason as the previous DNN, the input model
was resampled at 16kHz and a 512-point DFT was used. The



method STOI PESQ-NB SegSNR SI-SDR
noisy 0.524 1.512 -6.645 -15.711

baseline 0.639 1.834 -4.920 -16.984
DNN1 0.678 2.069 -2.946 -16.747

DNN1 + beamforming 0.651 1.982 -2.959 -18.009
DNN1 + beamforming + DNN2 0.626 1.835 -1.615 -17.631

Table 1: Validation results for noisy input, baseline with superdirective beamformer, and proposed methods

window size of the model is 32ms with 8ms look ahead,
which makes algorithmic latency 40ms.

2.4.4. Experiment

The SPEAR Challenge dataset was fine-tuned to the
model pre-trained with the ICASSP 2022 deep noise suppres-
sion challenge dataset [12]. Each channel of data is separately
used as input and reference. We adopt the loss function that
sum of CosSDRLoss and SpectrogramLoss. The Adam algo-
rithm is used to optimize the models.

3. RESULTS

Table 1. shows validation results for the development
set of the SPEAR dataset. We compare proposed methods
with noisy and baseline and present the evaluated results
of STOI[13], PESQ-NB[14], segSNR, and SI-SDR[15]. We
computed the average results of Dataset1, Dataset2, Dataset3,
and Dataset4. DNN1 is the primary DNN-based speech
enhancement followed by the baseline method. DNN1 +
beamforming is DNN1 followed by proposed superdirectivie
beamforimg. DNN1+beamforming + DNN2 uses TRU-Net
as post filter of DNN1 + beamforming.

4. CONCLUSION

In this report, we present speech enhancement methods
by using DNN-based LSTM-ResUnet as the primary network
and TRU-Net as post-filtering. And superdirective beam-
former is also applied to extract target speech in a cocktail
party scenario.

For future work, we will study on multi-channel speech
enhancement model as a primary model and linear spatial fil-
ter which can be combined better with non-linear DNN.
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