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ABSTRACT

We present a novel method combining fullband and subband
gated convolutional recurrent neural networks for multichannel
deep neural speech enhancement to the Speech Enhancement
for Augmented Reality (SPEAR) challenge. To target the chal-
lenge’s task of direction-dependent enhancement of a single
speaker, a direction-dependent feature extraction combined of
matched filters and a maximum-directivity beamformer was
employed. When evaluated on the SPEAR challenge devel-
opment datasets, our method achieved clear improvements
in the PESQ and siSDR metrics over a maximum-directivity
beamformer baseline.

1. BACKGROUND

1.1. SPEAR Challenge Task

In the Speech Enhancement for Augmented Reality (SPEAR)
challenge, the task is to remove background noise and speech
from all but one speaker from signals recorded by the micro-
phones of a head-mounted device [1]. The relative direction of
this “desired” speaker is given. The challenge provided train-
ing and development datasets based on the Easycom dataset
[2]. The head mounted device in these datasets has four micro-
phones on a pair of glasses and two microphones positioned
in the ears.

1.2. Convolutional Recurrent Neural Network

The convolutional recurrent neural network (CRN)1 is a
common architecture in short-time-Fourier-transform (STFT)-
domain audio processing. It has been applied to speech
enhancement, acoustic echo cancellation, and active noise
control [3, 4, 5, 6]. As shown in Fig. 1, it is comprised of an
encoder with multiple convolutional layers, a corresponding
convolutional decoder, inner recurrent neural network (RNN),
and skip connections between corresponding convolutional
encoder and decoder layers.

1Note that in this work, although there are other convolutional recurrent
architectures, we particularly refer to the convolutional recurrent U-net archi-
tecture by the term “convolutional recurrent neural network”.
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Fig. 1. Exemplary two-layer convolutional recurrent neural
network. Time dimension is not visualized.

The CRN’s input is three-dimensional (omitting the batch
dimension), with shape Cinp × T × F , where Cinp denotes
the number of input channels, T denotes the number of time
frames, and F denotes the number of frequency bins. The
encoder and decoder convolutional kernels are two dimen-
sional, with kernel shape (Kt ×Kf ) and convolutions carried
out along the time and frequency dimensions. Convolutions
are carried out in a causal way along the time dimension, if
the neural network needs to be causal. Along the frequency
dimension, a stride > 1 is typically employed, such that the fre-
quency dimension is progressively shrinked in the encoder and
re-inflated in the decoder, which applies “transposed convolu-
tions” along the frequency dimension. Before being processed
by the RNN, the output of the innermost encoder layer is
flattened along the channel and frequency dimensions. Thus,
the RNN processes a representation of the full input. With
the skip connections between encoder and decoder, the out-
puts of the encoder layers are concatenated to the input of the
corresponding decoder layers along the channel dimension.

1.3. Gated Convolutional Layers

Gated convolutional layers have been proposed as a modifica-
tion to standard convolutional layers, allowing for additional
control of information flow [7, 8, 9]. A gated convolutional
layer is shown in Fig. 2. Next to the main convolutional layer,
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Fig. 3. Exemplary two-layer inplace convolutional-recurrent
neural network. Time dimension is not visualized.

another convolutional layer with a sigmoid activation function
generates a gating output, which is multiplied to the output
of the main convolutional layer before it passes the activation
function.

1.4. Inplace Convolutional Recurrent Neural Network

The processing of a joint representation of all frequency bins
in the RNN in (G)CRNs has been shown to be be subopti-
mal in multichannel speech enhancement [9]. Inplace (gated)
convolutional recurrent neural networks (I(G)CRNs) therefore
use a different approach: With the encoder and decoder, the
frequency dimension is no longer shrinked and re-inflated but
is held constant over all layers, which is achieved by using
stride = 1 along the frequency dimension and padding the
frequency dimension with zeros on each side. The input of
the recurrent layers therefore has the size CN × T × F , where
CN is the number of output channels of the innermost encoder
layer. A RNN with input and output dimension CN separately
processes each element along the frequency dimension of the
encoder output. As in the convolutional layers, weights are
shared across frequency bins (this can be implemented by
flattening the encoder output along the batch and frequency
dimensions, creating a RNN batch size of B ·F , where B is the
input batch size). Figure 3 shows the ICRN architecture. It can
be considered a convolutional variant of [10], as it computes
an output for a center frequency bin from a region of the input

around this bin. The width of this frequency region, which
we refer to as subband receptive field width, can be computed
as 2D · (Kf − 1) ·R, where D is the number of layers in the
encoder and decoder, Kf is the kernel size along the frequency
dimension, and R is the frequency resolution, i.e., width of
each STFT bin.

2. MODEL DESCRIPTION

Figure 4 shows the signal flow with our proposed method.

2.1. Direction-Dependent Feature Extraction

We denote the STFT of the M -channel microphone input
by xt,f , where t and f denote frame and frequency index,
respectively. Furthermore, we denote the relative source direc-
tion (azimuth and polar angles) by θt. Using θt, the nearest
neighbour device transfer function dt,f is selected from the
provided set of acoustic transfer functions (ATFs)2. Matched
filters WMF,t,f are computed from dt,f as

WMFt,f
= diag

{
dt,f

||dt,f ||2

}
. (1)

Additionally, a maximum-directivity beamformer is computed
as

wMaxDirt,f =
Ω−1

f dt,f

dH
t,fΩ

−1
f dt,f

, (2)

where Ω−1
f is the inverse of the (diagonal-loaded) spherical

diffuse-field covariance matrix of the microphone array. Note
that we omit the indices t and f from here.

We denote the outputs of the filters described above as

yMF = WH
MFx (3)

and
yMaxDir = wH

MaxDirx. (4)

The real and imaginary parts of yMF and yMaxDir are concate-
nated, resulting in a feature vector with 2 · (M + 1) channels.
To facilitate convergence, the feature vectors are normalized
by the square root of the per-frequency-bin signal variances
σf estimated from yMF by averaging over all recordings in the
training dataset.

2.2. Hybrid Subband-Fullband Processing

In [11], a hybrid fullband-subband architecture outperformed
non-hybrid fullband and subband architectures that were up-
scaled for a fair comparison. In the fullband-subband architec-
ture, the input features first pass a fullband network, whose out-
put is concatenated with the input features and then processed
by the subband network. In our proposed method, we reversed

2We centered the phase of the device acoustic transfer functions around a
linear phase offset of 0.7 ms.



6-channel
microphone

input

relative speaker
location

(azimuth/elevation)

matched
filters

MaxDir
BF

device
ATFs

STFT ISTFT
estimated anechoic

ear signalsIm
Re com-

plex

Re

Im

HRTFs

Subband Network Fullband Network

Fig. 4. Signal flow diagram of proposed method

the order of fullband and subband networks, as we observed
slightly better performance with the subband → fullband order.
We used the IGCRN and GCRN architectures described in
Section 1 for the subband and fullband networks, respectively.
With the fullband network, two decoders respectively output
the real / imaginary part of an enhanced single-channel signal.
Finally, the normalization factors σf are re-multiplied on this
single-channel signal.

2.3. Spatialization

The device ATFs of channel five and six corresponding to
θt, i.e., head-related transfer functions are multiplied on the
enhanced single-channel signal to create left and right ear
signals, which are passed through an inverse STFT in order to
create the final processed time-domain ear signals.

2.4. Cost Function

The STFT of the processed time-domain ear signals is denoted
by ŷ, and the STFT of the anechoic reference ear signals is
denoted by y. As in [12], both ŷ and y are normalized by the
reference active speech root-mean-squared level. We employ
the complex compressed mean-squared error (CCMSE) [13]
loss function, which is computed as follows:

LCCMSE(y, ŷ) = (1− α)
〈
(|y|c − |ŷ|c)2

〉
+

α

〈∣∣∣|y|c · ej ̸ y − |ŷ|c · ej ̸ ŷ
∣∣∣2〉 , (5)

where c < 1 is a compression exponent, α is a phase-
sensitivity factor, and ⟨·⟩ denotes averaging over time index,
frequency index, and left/right ear signals.

2.5. Model Hyperparameters and Training Procedure

Our proposed method operates at a sampling rate of 16000
Hz; therefore, all microphone and reference signals are down-
sampled from the original sampling rate of 48000 Hz. In
processing, we use a STFT with DFT size and window length
508 (= 31.75 ms), hop size 254, and a

√
Hann window in both

the STFT and the inverse STFT. We use all six microphones
of the device (M = 6).

The subband network consists of four gated convolutional
layers in the encoder and four in the decoder, which all have 75
output channels, a kernel size of 1× 5, and an ELU activation
function, except for the last decoder layer, which has 2 output
channels and no activation function. The subband receptive
field width is 1008 Hz. The RNN within the subband network
is a two-layer gated recurrent unit (GRU) with an input and
output size of 75. The fullband network also comprises 4 gated
convolutional layers in the encoder and decoder. To keep the
model compact, we chose to keep the number of channels in
each layer constant at 64 in the fullband network. The kernel
size is 2× 3 and the stride along the frequency dimension is
2. The RNN within the fullband network is a two-layer Group
GRU with an input and output size of 960, four groups, and
representation rearrangement between layers. The number of
output channels in the last layer in each decoder is 1, with no
output activation function used.

The cost function STFT uses a DFT size and window
length of 400 (= 25 ms), hop size 200, and a Hann window.
The cost function parameters are set at c = 0.3 and α = 0.3.
To train the model, we used the synthetic training datasets D2,
D3, and D4. We define one epoch as training on a 4-second
snippet of each of the 1899 60-second reference files in these
datasets. The snippets are not selected entirely randomly but
are constrained to contain at least 60% ”active speech”. In this
process, ”active speech” is defined as ”any speaker talking” in
30% of cases and ”target speaker talking” in 70% of cases.

We implemented our proposed subband-fullband model
using the Pytorch Python package. The model was trained for
2500 epochs with a batch size of 2. The Adam optimizer with
a constant learning rate of 10−4 was used. Every 50 epochs,
the model was validated on the development datasets D2, D3,
and D4, from which we processed all full recordings3. PESQ
and siSDR metrics were computed on the segments defined in
the provided segments file. The best epoch was selected based
on the average PESQ.

3For memory reasons, we had to process the array signals in chunks of
10 seconds (except for the last chunk, which was shorter) overlapping by 1.5
seconds. This also applies to the submitted processed evaluation data.



Table 1. Metrics for unprocessed signals, maximum-
directivity beamformer baseline, and proposed method on
development datasets; PESQ is given in MOS points, siSDR
is given in dB.

dataset D2 dataset D3 dataset D4
PESQ siSDR PESQ siSDR PESQ siSDR

unproc. 1.09 -12.3 1.12 -14.3 1.12 -11.0
baseline 1.17 -5.5 1.20 -9.0 1.14 -6.0
proposed 1.85 5.2 1.82 2.3 1.66 4.9

2.6. Compared Methods

In addition to the proposed method, we evaluated metrics on
the maximum-directivity beamformer baseline, which was
part of the SPEAR challenge’s supplementary materials4. This
baseline uses a sampling rate of 48000 Hz, a window length of
768 samples (= 16 ms), and a hopsize of 384 samples.

2.7. Processing Delay and Computational Cost

Assuming that audio in-/output buffering is done in blocks
of length <hopsize>, our method has a processing delay of
window length + hopsize = 47.6ms. The hybrid subband-
fullband neural network has 4.12 million parameters and a
computational cost of 12.95 · 109 multiply-accumulate opera-
tions (MACs) per second.

3. RESULTS ON DEVELOPMENT DATASETS

Table 1 shows the average Perceptual Evaluation of Speech
Enhancement (PESQ) [14] and scale-invariant signal-to-
distortion ratio (siSDR) [15] metrics for the synthetic datasets
D2, D3, and D4. As can be seen, the proposed method clearly
improves on the maximum-directivity beamformer baseline.
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