validation
measurement.validation
¤
Classes¤
Measurement
¤
Bases: MeasurementBase
Class to store the measurements and their validation status.
This class holds the value of a given variable and station at a specific time, as
well as auxiliary information such as maximum and minimum values, depth and
direction, for vector quantities. All of these have a raw
version where a backup
of the original data is kept, should this change at any point.
Flags to monitor its validation status, if the data is active (and therefore can be used for reporting) and if it has actually been used for that is also included.
Attributes:
Name | Type | Description |
---|---|---|
depth |
int
|
Depth of the measurement. |
direction |
Decimal
|
Direction of the measurement, useful for vector quantities. |
raw_value |
Decimal
|
Original value of the measurement. |
raw_maximum |
Decimal
|
Original maximum value of the measurement. |
raw_minimum |
Decimal
|
Original minimum value of the measurement. |
raw_direction |
Decimal
|
Original direction of the measurement. |
raw_depth |
int
|
Original depth of the measurement. |
is_validated |
bool
|
Flag to indicate if the measurement has been validated. |
is_active |
bool
|
Flag to indicate if the measurement is active. An inactive measurement is not used for reporting |
Attributes¤
overwritten: bool
property
¤
Indicates if any of the values associated to the entry have been overwritten.
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if any raw field is different to the corresponding standard field. |
raws: tuple[str, ...]
property
¤
Return the raw fields of the measurement.
Returns:
Type | Description |
---|---|
tuple[str, ...]
|
tuple[str]: Tuple with the names of the raw fields of the measurement. |
Functions¤
clean()
¤
Check consistency of validation, reporting and backs-up values.
Source code in measurement/models.py
259 260 261 262 263 264 265 266 267 268 269 |
|
Variable
¤
Bases: PermissionsBase
A variable with a physical meaning.
Such as precipitation, wind speed, wind direction, soil moisture, including the associated unit. It also includes metadata to help identify what is a reasonable value for the data, to flag outliers and to help with the validation process.
The nature of the variable can be one of the following:
- sum: Cumulative value over a period of time.
- average: Average value over a period of time.
- value: One-off value.
Attributes:
Name | Type | Description |
---|---|---|
variable_id |
AutoField
|
Primary key. |
variable_code |
CharField
|
Code of the variable, eg. airtemperature. |
name |
CharField
|
Human-readable name of the variable, eg. Air temperature. |
unit |
ForeignKey
|
Unit of the variable. |
maximum |
DecimalField
|
Maximum value allowed for the variable. |
minimum |
DecimalField
|
Minimum value allowed for the variable. |
diff_error |
DecimalField
|
If two sequential values in the time-series data of this variable differ by more than this value, the validation process can mark this with an error flag. |
outlier_limit |
DecimalField
|
The statistical deviation for defining outliers, in times the standard deviation (sigma). |
null_limit |
DecimalField
|
The max % of null values (missing, caused by e.g. equipment malfunction) allowed for hourly, daily, monthly data. Cumulative values are not deemed trustworthy if the number of missing values in a given period is greater than the null_limit. |
nature |
CharField
|
Nature of the variable, eg. if it represents a one-off value, the average over a period of time or the cumulative value over a period |
Attributes¤
is_cumulative: bool
property
¤
Return True if the nature of the variable is sum.
Functions¤
__str__()
¤
Return the string representation of the object.
Source code in variable/models.py
165 166 167 |
|
clean()
¤
Validate the model fields.
Source code in variable/models.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
get_absolute_url()
¤
Get the absolute URL of the object.
Source code in variable/models.py
169 170 171 |
|
Functions¤
flag_suspicious_daily_count(data, null_limit)
¤
Finds suspicious records count for daily data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Series
|
The count of records per day. |
required |
null_limit
|
Decimal
|
The percentage of null data allowed. |
required |
Returns: A dataframe with the suspicious data.
Source code in measurement/validation.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
flag_suspicious_data(data, maximum, minimum, allowed_difference)
¤
Finds suspicious data in the database.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The dataframe with the data to be evaluated. |
required |
maximum
|
Decimal
|
The maximum allowed value. |
required |
minimum
|
Decimal
|
The minimum allowed value. |
required |
allowed_difference
|
Decimal
|
The allowed difference between the measurements. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A dataframe with the suspicious data. |
Source code in measurement/validation.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
flag_time_lapse_status(data)
¤
Flags if period of the time entries is correct.
It is assumes that the first entry is correct. A tolerance of 2% of the period is used when deciding on the suspicious status. The period is the mode of the time differences.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The dataframe with allowed_difference = Variable. the data. |
required |
Returns:
Type | Description |
---|---|
Series
|
A series with the status of the time lapse. |
Source code in measurement/validation.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
flag_value_difference(data, allowed_difference)
¤
Flags if the differences in value of the measurements is correct.
It is assume that the first entry is correct.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The dataframe with allowed_difference = Variable. the data. |
required |
allowed_difference
|
Decimal
|
The allowed difference between the measurements. |
required |
Returns:
Type | Description |
---|---|
Series
|
A series with the status of the value. |
Source code in measurement/validation.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
flag_value_limits(data, maximum, minimum)
¤
Flags if the values and limits of the measurements are within limits.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The dataframe with allowed_difference = Variable. the data. |
required |
maximum
|
Decimal
|
The maximum allowed value. |
required |
minimum
|
Decimal
|
The minimum allowed value. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A dataframe with suspicious columns indicating a problem. |
Source code in measurement/validation.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
generate_daily_summary(data, suspicious, null_limit, is_cumulative)
¤
Generates a daily report of the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The dataframe with the data to be evaluated. |
required |
suspicious
|
DataFrame
|
The dataframe with the suspicious data. |
required |
null_limit
|
Decimal
|
The percentage of null data allowed. |
required |
is_cumulative
|
bool
|
If the data is cumulative and should be aggregated by sum. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A dataframe with the daily report. |
Source code in measurement/validation.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
generate_validation_report(station, variable, start_time, end_time, maximum, minimum, is_validated=False)
¤
Generates a report of the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
station
|
str
|
Station of interest. |
required |
variable
|
str
|
Variable of interest. |
required |
start_time
|
str
|
Start time. |
required |
end_time
|
str
|
End time. |
required |
maximum
|
Decimal
|
The maximum allowed value. |
required |
minimum
|
Decimal
|
The minimum allowed value. |
required |
is_validated
|
bool
|
Whether to retrieve validated or non-validated data. |
False
|
Returns:
Type | Description |
---|---|
tuple[DataFrame, DataFrame]
|
A tuple with the summary report and the granular report. |
Source code in measurement/validation.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
get_data_to_validate(station, variable, start_time, end_time, is_validated=False)
¤
Retrieves data to be validated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
station
|
str
|
Station of interest. |
required |
variable
|
str
|
Variable of interest. |
required |
start_time
|
str
|
Start time. |
required |
end_time
|
str
|
End time. |
required |
is_validated
|
bool
|
Whether to retrieve validated or non-validated data. |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
A dictionary with the report for the chosen days. |
Source code in measurement/validation.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|
reset_validated_days(station, variable, start_date, end_date)
¤
Resets validation and active status for the selected data.
It also deletes the associated report data.
TODO: should this also reset any modified value, minimum or maximum entries?
Parameters:
Name | Type | Description | Default |
---|---|---|---|
station
|
str
|
Station code |
required |
variable
|
str
|
Variable code |
required |
start_date
|
str
|
Start date |
required |
end_date
|
str
|
End date |
required |
Source code in measurement/validation.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
|
reset_validated_entries(ids)
¤
Resets validation and activation status for the selected data.
TODO: should this also reset any modified value, minimum or maximum entries?
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
list
|
List of measurement ids to reset. |
required |
Source code in measurement/validation.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
save_validated_days(data)
¤
Saves the validated days to the database and launches the report calculation.
Only the data that is flagged as "validate?" will be saved. The only updated field is is_active. To update the value, maximum or minimum, use save_validated_entries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The dataframe with the validated data. |
required |
Source code in measurement/validation.py
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
save_validated_entries(data)
¤
Saves the validated data to the database.
Only the data that is flagged as "validate?" will be saved. Possible updated fields are: value, maximum, minimum and is_active.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The dataframe with the validated data. |
required |
Source code in measurement/validation.py
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
|