An Introduction to Structured Prediction

Carlo Ciliberto 20/11/2019

Electrical and Electronics Engineering Imperial College London Structured prediction: what & why?

Surrogate Frameworks

Examples

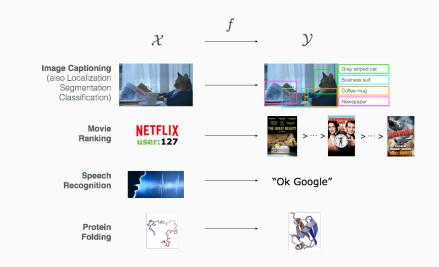
The Surrogate Approach

Likelihood Estimation Approaches

Structured Prediction with Implicit Embeddings

Structured prediction: what & why?

Structured Prediction



Q: This seems "just" standard supervised learning, doesn't it?

- Learn $f: \mathcal{X} \to \mathcal{Y}$,
- Given many training examples $(x_i, y_i)_{i=1}^n$.

A: Indeed it is supervised learning!

However, standard learning methods do not apply here...

What changes is what we do to learn f.

Supervised Learning 101

- ${\mathcal X}$ input space, ${\mathcal Y}$ output space,
- $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ loss function,
- ρ unknown probability on $\mathcal{X} \times \mathcal{Y}$.

Goal: find $f^{\star} : \mathcal{X} \to \mathcal{Y}$

$$f^{\star} = \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \quad \mathcal{E}(f), \qquad \qquad \mathcal{E}(f) = \mathbb{E}[\ell(f(x), y)],$$

given only the dataset $(x_i, y_i)_{i=1}^n$ sampled independently from ρ .

Solve
$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

Where $\mathcal{F} \subseteq \{f : \mathcal{X} \to \mathcal{Y}\}$ (usually a convex function space)

Solve
$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

Where $\mathcal{F} \subseteq \{f : \mathcal{X} \to \mathcal{Y}\}$ (usually a convex function space)

If \mathcal{Y} is a vector space (e.g. $\mathcal{Y} = \mathbb{R}$):

• *F* easy to choose/optimize over: (generalized) linear models, Kernel methods, Neural Networks, etc.

Solve
$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

Where $\mathcal{F} \subseteq \{f : \mathcal{X} \to \mathcal{Y}\}$ (usually a convex function space)

If \mathcal{Y} is a vector space (e.g. $\mathcal{Y} = \mathbb{R}$):

F easy to choose/optimize over: (generalized) linear models, Kernel methods, Neural Networks, etc.

Example: Linear models. $\mathcal{X} = \mathbb{R}^d$

•
$$f(x) = w^{\top} x$$
 for some $w \in \mathbb{R}^d$.

Empirical Risk Minimization (ERM)

We are interested in controlling the Excess Risk of \widehat{f} $\mathcal{E}(\widehat{f}) - \mathcal{E}(f^{\star})$

Wish list:

- Consistency: $\lim_{n \to +\infty} \ \mathcal{E}(\widehat{f}) - \mathcal{E}(f^\star) = 0$

• Learning Rates:

$$\mathcal{E}(\widehat{f}) - \mathcal{E}(f^*) \le O(n^{-\gamma})$$

 $\gamma > 0$ (the larger the better).

Prototypical Results: Empirical Risk Minimization

Several results allow to study ERM's *consistency* and *rates* when:

- $\mathcal{Y} = \mathbb{R}^d$ and,
- \mathcal{F} is a "standard" space of functions (e.g. a reproducing kernel Hilbert space).

Examples of techniques/notions involved to obtain these results:

- VC dimension,
- Rademacher & Gaussian complexity,
- Covering numbers,
- Stability,
- Empirical processes,
-

Solve
$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$$

Where $\mathcal{F} \subseteq \{f : \mathcal{X} \to \mathcal{Y}\}$ (usually a convex function space)

If \mathcal{Y} is a vector space (e.g. $\mathcal{Y} = \mathbb{R}$):

- *F* easy to choose/optimize over: (generalized) linear models, Kernel methods, Neural Networks, etc.
- If $\mathcal Y$ is a "structured" space:
 - How to choose \mathcal{F} ?
 - How to perform optimization over it?
 - How to study the statistics of \widehat{f} over \mathcal{F} ?

 ${\mathcal Y}$ arbitrary: how do we parametrize ${\mathcal F}$ and learn \widehat{f} ?

Surrogate approaches

- + Clear theory (e.g. convergence and learning rates)
- Only for special cases (classification, ranking, multi-labeling etc.) [Bartlett et al., 2006, Duchi et al., 2010, Mroueh et al., 2012]

Score learning techniques

- + General algorithmic framework (e.g. StructSVM [Tsochantaridis et al., 2005])
- Limited Theory (no consistency, see e.g. [Bakir et al., 2007])

Surrogate Frameworks

Binary Classification:

- "any" input space ${\mathcal X}$
- output space $\mathcal{Y} = \{-1, 1\}$

• 0-1 loss function, i.e
$$\ell(y, y') = \mathbf{1}_{\{y \neq y'\}} = \begin{cases} 0 & \text{if } y = y \\ 1 & \text{otherwise} \end{cases}$$

Example: Binary Classification Problem

- A classification rule is a map $f:\mathcal{X}\to\mathcal{Y}$
- The <u>risk</u> of a rule f is $\mathcal{E}(f) = \mathbb{E}_{(x,y)\sim\rho}[\mathbf{1}_{\{f(x)\neq y\}}].$
- The classification rule that minimizes ${\mathcal E}$ is

$$f^*: \mathcal{X} \to \mathcal{Y}, \qquad f^*(x) = \operatorname*{argmax}_{y \in \mathcal{Y}} \rho(y \mid x).$$

• Why? Exercise :)

Goal: approximate f^* given a training set $(x_i, y_i)_{i=1}^n$.

Issues:

i) \mathcal{Y} is **not** linear! $\Rightarrow \mathcal{H} = \{$ classification rules $\}$ is **not** linear!

i) $\ell(y, y') = \mathbf{1}_{\{y \neq y'\}}$ is **not** convex \Rightarrow very **hard** to minimize!

- i) Rephrase the problem using a linear output space,
- ii) Find a good convex "replacement" for $\ell.$

- i) Rephrase the problem using a linear output space,
- ii) Find a good convex "replacement" for $\ell.$

i) Replace $\mathcal{Y} = \{-1, 1\}$ to \mathbb{R} and consider functions $g : \mathcal{X} \to \mathbb{R}$ (*surrogate* classification rule)

- ✓ Rephrase the problem using a **linear** output space,
- ii) Find a good convex "replacement" for $\ell.$

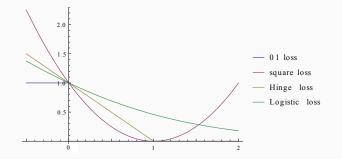
i) Replace $\mathcal{Y} = \{-1, 1\}$ to \mathbb{R} and consider functions $g : \mathcal{X} \to \mathbb{R}$ (surrogate classification rule)

✓ Rephrase the problem using a **linear** output space,

✓ Find a good **convex** "replacement" for ℓ .

- i) Replace $\mathcal{Y} = \{-1, 1\}$ to \mathbb{R} and consider functions $g : \mathcal{X} \to \mathbb{R}$ ("surrogate" classification rule)
- ii) Replace $\ell(y, y') = \mathbf{1}_{\{y \neq y'\}}$ with $\mathcal{L}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ non-negative convex "surrogate" loss: e.g. logistic, least squares, hinge.

Loss functions of the form $\mathcal{L}(y,y') = \tilde{\mathcal{L}}(y \cdot y')$



Surrogate ERM

The loss \mathcal{L} induces a *surrogate* risk

$$\mathcal{R}(g) = \mathbb{E}_{(x,y) \sim \rho} \ \mathcal{L}(g(x), y).$$

and can define the surrogate ERM estimator

$$\widehat{g} = \underset{g \in \mathcal{G}}{\operatorname{argmin}} \ \mathcal{R}_n(g) \qquad \mathcal{R}_n(g) = \frac{1}{n} \sum_{i=1}^n \ \mathcal{L}(g(x_i), y_i).$$

Modeling. The output space is linear \Rightarrow many options for G! **Optimization.** The loss is convex \Rightarrow we can efficiently find \hat{g} ! **Statistics.** Standard results \Rightarrow generalization properties of \hat{g} !

$$\mathcal{R}(\widehat{g}) - \mathcal{R}(g^*) \to 0$$

• How can we go from $\widehat{g}: \mathcal{X} \to \mathbb{R}$ to some $\widehat{f}: \mathcal{X} \to \mathcal{Y}$?

• How is g^* related to f^* ?

• Are surrogate learning rates for \widehat{g} of any use?

- How can we go from $\widehat{g} : \mathcal{X} \to \mathbb{R}$ to some $\widehat{f} : \mathcal{X} \to \mathcal{Y}$? Standard approach: $\widehat{f}(x) = \operatorname{sign}(\widehat{g}(x))$
- How is g^* related to f^* ?

• Are surrogate learning rates for \widehat{g} of any use?

- How can we go from $\widehat{g} : \mathcal{X} \to \mathbb{R}$ to some $\widehat{f} : \mathcal{X} \to \mathcal{Y}$? Standard approach: $\widehat{f}(x) = \operatorname{sign}(\widehat{g}(x))$
- How is g* related to f*?
 Exercise. f*(x) = sign(g*(x))!
- Are surrogate learning rates for \widehat{g} of any use?

- How can we go from $\widehat{g} : \mathcal{X} \to \mathbb{R}$ to some $\widehat{f} : \mathcal{X} \to \mathcal{Y}$? Standard approach: $\widehat{f}(x) = \operatorname{sign}(\widehat{g}(x))$
- How is g* related to f*?
 Exercise. f*(x) = sign(g*(x))!
- Are surrogate learning rates for \hat{g} of any use? Theorem.

$$\mathcal{E}(\widehat{f}) - \mathcal{E}(f^{\star}) \ \leq \ \varphi \Big(\mathcal{R}(\widehat{g}) - \mathcal{R}(g^{\star}) \Big).$$

(where $\varphi: \mathbb{R} \to \mathbb{R}_+$ depends on the surrogate loss \mathcal{L}).

Example: Multiclass Classification setting

Multiclass Classification:

- \bullet input space ${\cal X}$
- output space $\mathcal{Y} = \{1, 2, \dots, T\}$
- 0-1 loss function, i.e $\ell(y,y') = \mathbf{1}_{\{y \neq y'\}}$

Issues:

- Can we still map \mathcal{Y} in \mathbb{R} ?
- What surrogate \mathcal{L} can replace ℓ ?

• Attempt 1: $\mathcal{Y} = \{1, 2, \dots, T\} \subset \mathbb{R}$. Could replace \mathcal{Y} with \mathbb{R}

Example: Multiclass Classification

Attempt 1: 𝒴 = {1,2,...,T} ⊂ ℝ. Could replace 𝒴 with ℝ
Not a good choice: induces an arbitrary distance on classes.
(i.e. 1 is closer to 2 than 3 and so on ...)

Example: Multiclass Classification

Attempt 1: Y = {1,2,...,T} ⊂ ℝ. Could replace Y with ℝ
Not a good choice: induces an arbitrary distance on classes.
(i.e. 1 is closer to 2 than 3 and so on ...)

Attempt 2: replace 𝒴 = {1, 2, ..., T} with ℝ^T.
"Replace" means "embed" 𝒴 into ℝ^T using an encoding c : 𝒴 → ℝ^T defined by

$$\mathsf{c}(i) = e_i \qquad \qquad i = 1, \dots Y$$

where e_i is the i^{th} vector of the canonical basis of \mathbb{R}^T .

Given a surrogate loss $\mathcal{L} : \mathbb{R}^T \times \mathbb{R}^T \to \mathbb{R}$ (hinge? least squares?)...

 \ldots we can train the surrogate estimator $\widehat{g}:\mathcal{X}
ightarrow \mathbb{R}^T$

$$\widehat{g} = \operatorname*{argmin}_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(g(x_i), \mathsf{c}(y_i)).$$

Given a surrogate loss $\mathcal{L} : \mathbb{R}^T \times \mathbb{R}^T \to \mathbb{R}$ (hinge? least squares?)...

 \ldots we can train the surrogate estimator $\widehat{g}:\mathcal{X}
ightarrow \mathbb{R}^T$

$$\widehat{g} = \underset{g \in \mathcal{G}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(g(x_i), \mathsf{c}(y_i)).$$

Question: But \hat{g} has values in \mathbb{R}^T ... How can we go back to \mathcal{Y} ?

Given a surrogate loss $\mathcal{L} : \mathbb{R}^T \times \mathbb{R}^T \to \mathbb{R}$ (hinge? least squares?)...

 \ldots we can train the surrogate estimator $\widehat{g}:\mathcal{X}
ightarrow \mathbb{R}^T$

$$\widehat{g} = \underset{g \in \mathcal{G}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(g(x_i), \mathsf{c}(y_i)).$$

Question: But \hat{g} has values in \mathbb{R}^T ... How can we go back to \mathcal{Y} ?

Answer: via a decoding routine!

$$\widehat{f}(x) = \operatorname*{argmax}_{t=1,\dots T} \widehat{g}_t(x)$$

The same questions as for binary classification ...

• How can we go from $\widehat{g}: \mathcal{X} \to \mathbb{R}^T$ to some $\widehat{f}: \mathcal{X} \to \mathcal{Y}$?

• How is g^* related to f^* ?

• Are surrogate learning rates for \widehat{g} of any use?

The same questions as for binary classification ...

- How can we go from $\hat{g} : \mathcal{X} \to \mathbb{R}^T$ to some $\hat{f} : \mathcal{X} \to \mathcal{Y}$? **Decoding:** $\hat{f}(x) = \operatorname{argmax}_{t=1,...,T} \hat{g}_t(x)$
- How is g^* related to f^* ?

• Are surrogate learning rates for \widehat{g} of any use?

The same questions as for binary classification ...

- How can we go from $\hat{g} : \mathcal{X} \to \mathbb{R}^T$ to some $\hat{f} : \mathcal{X} \to \mathcal{Y}$? **Decoding:** $\hat{f}(x) = \operatorname{argmax}_{t=1,...,T} \hat{g}_t(x)$
- How is g* related to f*?
 Not clear: it strongly depends on L!
- Are surrogate learning rates for \$\hat{g}\$ of any use?
 Not clear: it strongly depends on \$\mathcal{L}\$!

The Surrogate Approach

Taking inspiration from the previous examples

A possible approach to structured prediction is to find:

1. A linear surrogate space \mathcal{H} ,

2. An encoding $c : \mathcal{Y} \to \mathcal{H}$,

3. A surrogate loss $\mathcal{L} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$,

4. A decoding $d: \mathcal{Y} \to \mathcal{H}$.

Then:

- 1. Encode training set $(x_i, y_i)_{i=1}^n$ into $(x_i, c(y_i))_{i=1}^n$,
- 2. Learn $\widehat{g} = \operatorname{argmin}_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(g(x_i), c(y_i))$ (using standard supervised learning methods)
- 3. **Decode** $\widehat{f} = \mathsf{d} \circ \widehat{g}$.

Wish list

However, recall that learning \widehat{g} is solving a different problem...

$$\mathcal{R}(g) = \int \mathcal{L}(g(x), \mathsf{c}(y)) \ d\rho(x, y).$$

Wish list

However, recall that learning \hat{g} is solving a **different** problem...

$$\mathcal{R}(g) = \int \mathcal{L}(g(x), \mathsf{c}(y)) \ d\rho(x, y).$$

In order to be "useful", a surrogate framework needs to satisfy:

• Fischer Consistency. $\mathcal{E}(f^{\star}) = \mathcal{E}(\mathsf{d} \circ g^{\star})$

Wish list

However, recall that learning \widehat{g} is solving a **different** problem...

$$\mathcal{R}(g) = \int \mathcal{L}(g(x), \mathsf{c}(y)) \ d\rho(x, y).$$

In order to be "useful", a surrogate framework needs to satisfy:

- Fischer Consistency. $\mathcal{E}(f^{\star}) = \mathcal{E}(\mathsf{d} \circ g^{\star})$
- Comparison Inequality. for any $g: \mathcal{X} \to \mathcal{H}$,

$$\mathcal{E}(\mathsf{d} \circ g) - \mathcal{E}(f^{\star}) \leq \varphi\left(\mathcal{R}(g) - \mathcal{R}(g^{\star})\right),$$

with $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ continuous, non-decreasing and $\varphi(0) = 0$.

Fisher consistency. We want this because we want that the surrogate problem and the decoding procedure are good ones, meaning that if we decode the best surrogate solution $d \circ g^*$ we have the same risk as the best original solution f^* .

Comparison inequality

Comparison inequality. If we learn a \widehat{g} which approximates g^* ...

$$\mathcal{R}(\widehat{g}) - \mathcal{R}(g^*) \to 0 \quad \text{ as } n \to +\infty.$$

... then the comparison inequality implies,

$$\mathcal{E}(\mathsf{d}\circ\widehat{g})-\mathcal{E}(f^*)\to 0 \quad \text{ as } n\to +\infty.$$

Therefore $\widehat{f} := d \circ \widehat{g}$ is a good estimator for the original problem!

Comparison inequality. If we learn a \widehat{g} which approximates g^* ...

$$\mathcal{R}(\widehat{g}) - \mathcal{R}(g^*) \to 0 \quad \text{ as } n \to +\infty.$$

... then the comparison inequality implies,

$$\mathcal{E}(\mathsf{d}\circ\widehat{g})-\mathcal{E}(f^*)\to 0 \quad \text{ as } n\to +\infty.$$

Therefore $\widehat{f} := d \circ \widehat{g}$ is a good estimator for the original problem!

Rates. Moreover, if $\mathcal{R}(\hat{g}) - \mathcal{R}(g^*) \le n^{-\alpha}$ for some $\alpha > 0$ $\mathcal{E}(\hat{f}) - \mathcal{E}(f^*) \le \varphi(n^{-\alpha}).$

Knowledge of φ allows to derive rates for \widehat{f} from the rates of \widehat{g} !

Going back to the examples...

Surrogate framework for binary classification:

•
$$\mathcal{Y} = \{1, -1\}, \mathcal{H} = \mathbb{R}$$

- coding c : $\{1, -1\} \to \mathbb{R}$ is the embedding $\mathcal{Y} \hookrightarrow \mathbb{R}$
- $\mathcal{L}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$: least squares \checkmark , hinge \checkmark , logistic \checkmark
- decoding $d : \mathbb{R} \to \{1, -1\}$ is $d(r) = \operatorname{sign}(r)$.

Fisher consistency? Comparison inequality? Exercise for the reader! :)

Going back to the examples...

Surrogate framework for multiclass classification:

•
$$\mathcal{Y} = \{1, 2, \dots, T\}, \ \mathcal{H} = \mathbb{R}^T$$

- coding $c : \{1, 2, \dots, T\} \hookrightarrow \mathbb{R}^T$ with $c(i) = e_i$.
- $\mathcal{L} : \mathbb{R}^T \times \mathbb{R}^T \to \mathbb{R}_+$: least squares \checkmark , hinge \times .
- decoding $d : \mathbb{R}^T \to \{1, 2, \dots, T\}$ is $d(r) = \operatorname{argmax}_{t=1,\dots,T} r_t$.

Fisher consistency? Comparison inequality? Exercise for the reader! :)

Pros

- **Modeling.** Directly borrow from ERM literature to design (surrogate) learning algorithms (vector-valued regression!)
- Statistics. Extend *surrogate* ERM rates for \hat{g} to \hat{f} by means of the comparison inequality.
- **Optimization.** Bypasses/Postpones dealing with the non-convex ℓ at prediction time!

Cons

• Flexibility. Need to design a surrogate framework $(\mathcal{H}, c, \mathcal{L}, d)$ on a case-by-case basis for any (ℓ, \mathcal{Y}) .

Likelihood Estimation Approaches

A standard approach

Alternative approach to address structured prediction problems:

- Model the likelihood of observing y given x as a function $F^*: \mathcal{Y} \times \mathcal{X} \to [0, 1]$ with $F^*(y, x) = \rho(y|x)$.
- Learn $\hat{F} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$
- Ideally $\hat{F} \to F^*$, with $F^*(x,y) = \rho(y \mid x)$.
- Then,
 - Ideal solution $f^*(x) = \operatorname{argmax}_{y \in \mathcal{Y}} F^*(x, y)$
 - Approximate solution $\hat{f}(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \hat{F}(x, y)$

Struct SVM [Tsochantaridis et al., 2005]

Model:

- joint feature map $\Psi: \mathcal{Y} \times \mathcal{X} \to \mathcal{F}$ with \mathcal{F} a Hilbert space.
- $F(y,x) = \langle w, \Psi(y,x) \rangle$ with $w \in \mathcal{F}$ a parameter vector.

Algorithm: Find the parameters \hat{w} that solve

$$\min_{\boldsymbol{v}\in\mathcal{F}} \quad \|\boldsymbol{w}\|^2 \langle \boldsymbol{w}, \Psi(\boldsymbol{y}_i, \boldsymbol{x}_i) \rangle \ge \langle \boldsymbol{w}, \Psi(\boldsymbol{y}, \boldsymbol{x}_i) \rangle + 1 \forall i = 1, \dots, n, \forall \boldsymbol{y} \in \mathcal{Y} \setminus y_i$$

Intuition: the best $y^*(x)$ must be such that $F(x, y^*(x))$ is considerably larger than any other F(x, y)

However, things as more complicated...

we don't want to simply maximise $\rho(y \mid x)$, but we have a loss function ℓ as part of the problem:

$$\mathcal{E}(f) = \int \ell(f(x), y) \, d\rho(y \mid x) d\rho_{\mathcal{X}}(x)$$

Model:

- *joint* feature map $\Psi : \mathcal{Y} \times \mathcal{X} \to \mathcal{F}$ with \mathcal{F} a Hilbert space.
- $F(y,x) = \langle w, \Psi(y,x) \rangle$ with $w \in \mathcal{F}$ a parameter vector.

Algorithm: Find the parameters \hat{w} that solve

$$\min_{w \in \mathcal{F}} \|w\|^2 \langle w, \Psi(y_i, x_i) \rangle \ge \langle w, \Psi(y, x_i) \rangle + \ell(y_i, y) \forall i = 1, \dots, n, \forall y \in \mathcal{Y} \setminus y_i$$

Struct SVM Variants

Model:

- *joint* feature map $\Psi : \mathcal{Y} \times \mathcal{X} \to \mathcal{F}$ with \mathcal{F} a Hilbert space.
- $F(y,x) = \langle w, \Psi(y,x) \rangle$ with $w \in \mathcal{F}$ a parameter vector.

Algorithm: Find the parameters \hat{w} that solve

$$\min_{w \in \mathcal{F}} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
$$\langle w, \Psi(y_i, x_i) \rangle \ge \langle w, \Psi(y, x_i) \rangle + \ell(y_i, y) - \xi_i$$
$$\forall i = 1, \dots, n, \forall y \in \mathcal{Y} \setminus y_i$$

Generalizing the "slack" variables in standard SVM

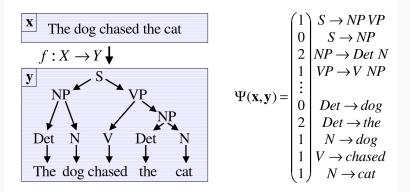
Algorithm 1 Algorithm for solving SVM_0 and the loss re-scaling formulations $SVM_1^{\Delta s}$ and $SVM_2^{\Delta s}$ 1: Input: $(\mathbf{x}_1, \mathbf{y}_1), \ldots, (\mathbf{x}_n, \mathbf{y}_n), C, \epsilon$ 2: $S_i \leftarrow \emptyset$ for all $i = 1, \ldots, n$ 3: repeat 4: for $i = 1, \ldots, n$ do 5: set up cost function $\text{SVM}_{1}^{\Delta s}: H(\mathbf{y}) \equiv (1 - \langle \delta \Psi_{i}(\mathbf{y}), \mathbf{w} \rangle) \Delta(\mathbf{y}_{i}, \mathbf{y})$ $\text{SVM}_{2}^{\Delta s}$: $H(\mathbf{y}) \equiv (1 - \langle \delta \Psi_i(\mathbf{y}), \mathbf{w} \rangle) \sqrt{\Delta(\mathbf{y}_i, \mathbf{y})}$ $\text{SVM}_1^{\bigtriangleup m}$: $H(\mathbf{y}) \equiv \bigtriangleup(\mathbf{y}_i, \mathbf{y}) - \langle \delta \Psi_i(\mathbf{y}), \mathbf{w} \rangle$ $\text{SVM}_2^{\Delta m}$: $H(\mathbf{y}) \equiv \sqrt{\Delta(\mathbf{y}_i, \mathbf{y})} - \langle \delta \Psi_i(\mathbf{y}), \mathbf{w} \rangle$ where $\mathbf{w} \equiv \sum_{j} \sum_{\mathbf{v}' \in S_{j}} \alpha_{j\mathbf{y}'} \delta \Psi_{j}(\mathbf{y}')$. compute $\hat{\mathbf{y}} = \arg \max_{\mathbf{y} \in Y} H(\mathbf{y})$ 6: compute $\xi_i = \max\{0, \max_{\mathbf{y} \in S_i} H(\mathbf{y})\}$ 7: if $H(\hat{\mathbf{y}}) > \xi_i + \epsilon$ then 8: 9: $S_i \leftarrow S_i \cup \{\hat{\mathbf{v}}\}$ $\alpha_S \leftarrow \text{optimize dual over } S, S = \bigcup_i S_i.$ 10: 11: end if end for 12:13: **until** no S_i has changed during iteration

Pros

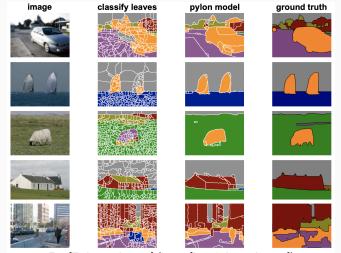
• Flexibility. Can be virtually applied to any problem.

Cons

- **Optimization.** Requires solving an optimization over \mathcal{Y} and with respect to ℓ at **every** iteration. It can become very expensive!
- Statistics. It has been shown that in some cases this approach is **not consistent** [Bakir et al., 2007].



Examples: Image Segmentation



E.g. [Taskar et al., 2003] (image [Lempitsky et al., 2011])

Examples: Pose Estimation

E.g. [Ramanan et al., 2005, Ramanan, 2006, Ferrari et al., 2008]

Surrogate approaches

- + Clear theory (e.g. convergence and learning rates)
- Only for special cases (classification, ranking, multi-labeling etc.)
 [Bartlett et al., 2006, Duchi et al., 2010, Mroueh et al., 2012]

Score learning techniques

- + General algorithmic framework (e.g. StructSVM [Tsochantaridis et al., 2005])
- Limited Theory (no consistency, see e.g. [Bakir et al., 2007])

Surrogate approaches

- + Clear theory (e.g. convergence and learning rates)
- Only for special cases (classification, ranking, multi-labeling etc.)
 [Bartlett et al., 2006, Duchi et al., 2010, Mroueh et al., 2012]

Score learning techniques

- + General algorithmic framework (e.g. StructSVM [Tsochantaridis et al., 2005])
- Limited Theory (no consistency, see e.g. [Bakir et al., 2007])

Can we get the best of both worlds?

Structured Prediction with Implicit Embeddings

We would like a method that:

• Is **flexible**: can be applied to (m)any \mathcal{Y} and ℓ .

• Leads to efficient computations.

• Has strong theoretical guarantees (i.e. consistency, rates)

Ideal solution

Let's study the expected risk of our problem

$$\mathcal{E}(f) = \int \ell(f(x), y) \, d\rho(x, y)$$
$$= \int \left(\int \ell(f(x), y) \, d\rho(y|x) \right) \, d\rho_{\mathcal{X}}(x)$$

We can minimize it pointwise. Then best $f^* : \mathcal{X} \to \mathcal{Y}$ is:

$$f^{\star}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \int \ell(z, y) \ d\rho(y|x)$$

 f^* is the point-wise minimizer of the expectation $\mathbb{E}_{y|x} \ell(z,y)$ conditioned w.r.t. x

Consider again the case where $\mathcal{Y} = \{1, \dots, T\}$.

Then any $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is represented by a *matrix* $V \in \mathbb{R}^{T \times T}$:

$$\ell(y,z) = V_{yz} = e_y^\top V e_z \qquad \forall y, z \in \mathcal{Y}$$

where e_y is the *y*-th element of the canonical basis.

This (bi)linearity will be very useful...

Finite Dimensional Intuition (cont.)

Going back to $f^{\star}...$

$$f^{\star}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \int \ell(z, y) \, d\rho(y|x)$$
$$= \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \int e_z^{\top} V e_y \, d\rho(y|x)$$
$$= \underset{z \in \mathcal{Y}}{\operatorname{argmin}} e_z^{\top} V \int e_y \, d\rho(y|x).$$

Denote by $g^* : \mathcal{X} \to \mathbb{R}^T$ the function $g^*(x) = \int e_y \, d\rho(y|x)$. Then: $f^*(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ e_z^\top V g^*(x)$ **Idea:** replace $g^{\star} : \mathcal{X} \to \mathbb{R}^T$ in

$$f^{\star}(x) = \operatorname*{argmin}_{z \in \mathcal{Y}} e_z^{\top} V g^{*}(x)$$

. . . with an estimator $\widehat{g}:\mathcal{X}\rightarrow \mathbb{R}^{T}$

$$\widehat{f}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ e_z^\top V \widehat{g}(x)$$

What is a good algorithm to learn \widehat{g} ?

Recall that $g^{\star}(x)=\int e_y \ d\rho(y|x)=\mathbb{E}_{y|x}[e_y]$ is a conditional expectation. . .

It is easy to show that

$$g^{\star} = \underset{g:\mathcal{X}\to\mathbb{R}^T}{\operatorname{argmin}} \mathcal{R}(g) \qquad \qquad \mathcal{R}(g) = \int \left\|g(x) - e_y\right\|^2 d\rho(x,y)$$

Therefore \hat{g} can be taken to be the least-squares ERM estimator!

Natural way to find a surrogate framework:

- Encoding. $c: \mathcal{Y} \to \mathcal{H} = \mathbb{R}^T$ such that $y \mapsto e_y$,
- Loss. $\mathcal{L}(g(x), c(y)) = ||g(x) c(y)||^2$,
- Decoding. $d: \mathbb{R}^T \to \mathcal{Y}$ such that for any $h \in \mathbb{R}^T$

$$\mathsf{d}(h) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ e_z^\top V h$$

Very similar to the multiclass setting (but can be applied to any ℓ)!

We perform vector-valued ridge-regression.

Let $\mathcal{X} = \mathbb{R}^d$. We parametrize $\widehat{g}(x) = \widehat{W}x$, where

$$\widehat{W} = \operatorname{argmin}_{W \in \mathbb{R}^{T \times d}} \frac{1}{n} \sum_{i=1}^{n} \|e_{y_i} - W x_i\|^2 + \lambda \|W\|_F^2 ,$$

The solution is

$$\widehat{W} = Y^{\top}X \ (X^{\top}X + n\lambda I)^{-1}$$

 $I \in \mathbb{R}^{d \times d}$ identity matrix, $X \in \mathbb{R}^{n \times d}$ and $Y \in \mathbb{R}^{n \times T}$ the matrices with *i*-th row corresponding to x_i and e_{y_i} respectively.

By some algebraic manipulation...

$$\widehat{g}(x) = \widehat{W}x = Y^{\top} \underbrace{X \ (X^{\top}X + n\lambda I)^{-1}x}_{\alpha(x)} = \sum_{i=1}^{n} \alpha_i(x) \ e_{y_i} ,$$
(1)

where the weights $\alpha: \mathcal{X} \rightarrow \mathbb{R}^n$ are such that

$$\alpha(x) = (\alpha_1(x), \dots, \alpha_n(x))^\top = [X(X^\top X + n\lambda I)^{-1}] x \in \mathbb{R}^n.$$

Therefore, by replacing the definition of $\widehat{f}. \hdots$

$$\widehat{f}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ e_z^\top V \widehat{g}(x)$$
$$= \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ \sum_{i=1}^n \alpha_i(x) \ \underbrace{e_z^\top V e_{y_i}}_{\ell(z,y_i)}$$

In other words,

$$\widehat{f}(x) = \operatorname*{argmin}_{z \in \mathcal{Y}} \sum_{i=1}^{n} \alpha_i(x) \ \ell(z, y_i)$$

This approach alternates between two phases:

• Learning. Where the score function $\alpha : \mathcal{X} \to \mathbb{R}^n$ is estimated.

• Prediction. Where we need to solve

$$\widehat{f}(x) = \operatorname*{argmin}_{z \in \mathcal{Y}} \sum_{i=1}^{n} \alpha_i(x) \ \ell(z, y_i)$$

Note. similarly to likelihood estimation methods one needs to know how to optimize over \mathcal{Y} (but only needs to do it once!).

Going back to our wishlist:

• Is **flexible**: can be applied to (m)any $\mathcal Y$ and ℓ .

- Leads to efficient computations.
 - No optimization over ${\mathcal Y}$ during training,
 - Recovers many previous surrogate approaches.

 Has strong theoretical guarantees (i.e. consistency, rates) In a minute... **Goal:** generalize the intuition from the finite case to any \mathcal{Y} .

Definition. A continuous $\ell : \mathcal{Z} \times \mathcal{Y} \to \mathbb{R}$ admits an **Implicit Embedding (IE)** if there exists a map $c : \mathcal{Y} \to \mathcal{H}$ into a separable Hilbert space \mathcal{H} and a linear operator $V : \mathcal{H} \to \mathcal{H}$ such that

 $\ell(z,y) = \langle \mathsf{c}(z) , V \mathsf{c}(y) \rangle_{\mathcal{H}}.$

Goal: generalize the intuition from the finite case to any \mathcal{Y} .

Definition. A continuous $\ell : \mathcal{Z} \times \mathcal{Y} \to \mathbb{R}$ admits an **Implicit Embedding (IE)** if there exists a map $c : \mathcal{Y} \to \mathcal{H}$ into a separable Hilbert space \mathcal{H} and a linear operator $V : \mathcal{H} \to \mathcal{H}$ such that

$$\ell(z,y) \;=\; \left\langle \; \mathsf{c}(z) \;, V \; \mathsf{c}(y) \; \right
angle_{\mathcal{H}}.$$

- For V = I, we recover the notion of *reproducing kernel* !
- Accounts for non positive definite, non-symmetric functions,
- Holds also for infinite dimensional surrogate spaces $\mathcal{H}!$

Quite technical definition however... when does it hold in practice?

All Losses on discrete ${\mathcal Y}$ (strings, graphs, orderings, subsets, etc.)

Typical Regression & Classification loss:

least-squares, logistic, hinge, e-insensitive, pinball, etc.

Robust estimation loss:

absolute value, Huber, Cauchy, German-McLure, "Fair" an L2- L1.

Distances on Histograms/Probabilities:

The χ 2 and the Hellinger distances, Sinkhorn Divergence.

KDE. Loss functions
$$\triangle(y, y') = 1 - k(y, y')$$

 k reproducing kernel

Diffusion distances on Manifolds:

The squared diffusion distance induced by the heat kernel (at time t > 0) on a compact Reimannian manifold without boundary.

A few useful sufficient conditions...

Theorem 19. Let \mathcal{Y} be a set. A function $\triangle : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ satisfy Asm. 1 when at least one of the following conditions hold:

- 1. Y is a finite set, with discrete topology.
- Y = [0,1]^d with d ∈ N, and the mixed partial derivative L(y, y') = ∂<sup>2d_Δ(y₁)...,y_d)/<sub>y₁...,y_d</sup>/<sub>y₁...,y_d/<sub>y₁...,y_d/<sub>y₁...,y_d/<sub>y₁...,y_d/<sub>y₁...,y_d/<sub>y₁...,y_d/_{y₁}
 exists almost everywhere, where y = (y_i)^d_{i=1}, y' = (y'_i)^d_{i=1} ∈ Y, and satisfies
 </sup></sub></sub></sub></sub></sub></sub></sub>

$$\int_{\mathcal{Y}\times\mathcal{Y}} |L(y,y')|^{1+\varepsilon} dy dy' < \infty, \quad \text{with} \quad \varepsilon > 0. \tag{149}$$

 Y is compact and △ is a continuous kernel, or △ is a function in the RKHS induced by a kernel K. Here K is a continuous kernel on Y × Y, of the form

$$K((y_1, y_2), (y'_1, y'_2)) = K_0(y_1, y'_1)K_0(y_2, y'_2), \quad \forall y_i, y'_i \in \mathcal{Y}, i = 1, 2,$$

with K_0 a bounded and continuous kernel on \mathcal{Y} .

4. Y is compact and

$$\mathcal{Y} \subseteq \mathcal{Y}_0, \quad \bigtriangleup = \bigtriangleup_0|_{\mathcal{Y}},$$

that is the restriction of $\triangle_0 : \mathcal{Y}_0 \times \mathcal{Y}_0 \to \mathbb{R}$ on \mathcal{Y} , and \triangle_0 satisfies Asm. 1 on \mathcal{Y}_0 ,

5. Y is compact and

$$\triangle(y, y') = f(y) \triangle_0 (F(y), G(y'))g(y'),$$

with F, G continuous maps from \mathcal{Y} to a set \mathcal{Z} with $\triangle_0 : \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ satisfying Asm. 1 and $f, g: \mathcal{Y} \to \mathbb{R}$, bounded and continuous.

6. Y compact and

$$\triangle = f(\triangle_1, \dots, \triangle_p)$$

where $f : [-M, M]^d \to \mathbb{R}$ is an analytic function (e.g. a polynomial), $p \in \mathbb{N}$ and $\triangle_1, \ldots, \triangle_p$ satisfy Asm. I on Y. Here $M \ge \sup_{1 \le i \le p} ||V_i||C_i$ where V_i is the operator associated to the loss \triangle_i and C_i is the value that bounds the norm of the feature map Ψ_i associated to \triangle_i_w with $i \in \{1, \ldots, p\}$. If ℓ has an implicit embedding:

$$f^{\star}(x) = \operatorname*{argmin}_{z \in \mathcal{Y}} \langle \mathsf{c}(z), V \ g^{\star}(x) \rangle_{\mathcal{H}},$$

with $g^{\star}: \mathcal{X} \to \mathcal{H}$ such that

$$g^{\star}(x) = \int \mathsf{c}(y) \ d\rho(y|x),$$

the conditional mean embedding of $\rho(\cdot|x)$ with respect to the output kernel $k_y(z, y) = \langle c(z), c(z) \rangle_{\mathcal{H}}$. (see [Song et al., 2009])

We approximate g^{\star} with $\widehat{g}(x) = \widehat{W}x$

$$\widehat{W} = \underset{W \in \mathcal{H} \otimes \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n \|\mathsf{c}(y_i) - Wx_i\|^2 + \lambda \|W\|_F^2 ,$$

- If $\mathcal{H} = \mathbb{R}^T$ we have $W \in \mathbb{R}^T \otimes \mathbb{R}^d = \mathbb{R}^{T \times d}$ is a matrix,
- If \mathcal{H} is infinite dimensional, $W \in \mathcal{H} \otimes \mathbb{R}^d$ is an operator.

We approximate g^{\star} with $\widehat{g}(x)=\widehat{W}x$

$$\widehat{W} = \operatorname{argmin}_{W \in \mathcal{H} \otimes \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \|\mathsf{c}(y_i) - Wx_i\|^2 + \lambda \|W\|_F^2 ,$$

- If $\mathcal{H} = \mathbb{R}^T$ we have $W \in \mathbb{R}^T \otimes \mathbb{R}^d = \mathbb{R}^{T \times d}$ is a matrix,
- If \mathcal{H} is infinite dimensional, $W \in \mathcal{H} \otimes \mathbb{R}^d$ is an operator.

Still...the solution is

$$\widehat{W} = Y^\top X \ (X^\top X + n\lambda I)^{-1}$$

 $X \in \mathbb{R}^{n \times d}$ and $Y \in \mathbb{R}^n \otimes \mathcal{H}$ the matrices/operators with *i*-th "row" corresponding to x_i and $c(y_i)$ respectively.

 \widehat{W} contains infinitely many parameters. However. . .

$$\widehat{g}(x) = \widehat{W}x = Y^{\top} \underbrace{X \ (X^{\top}X + n\lambda I)^{-1}x}_{\alpha(x)} = \sum_{i=1}^{n} \alpha_i(x) \operatorname{c}(y_i) ,$$

where the weights $\alpha:\mathcal{X}\rightarrow\mathbb{R}^n$ are such that

$$\alpha(x) = (\alpha_1(x), \dots, \alpha_n(x))^\top = \underbrace{[X(X^\top X + n\lambda I)^{-1}]}_{d \times d \text{matrix!}} x \in \mathbb{R}^n.$$

 \widehat{W} contains infinitely many parameters. However. . .

$$\widehat{g}(x) = \widehat{W}x = Y^{\top} \underbrace{X \ (X^{\top}X + n\lambda I)^{-1}x}_{\alpha(x)} = \sum_{i=1}^{n} \alpha_i(x) \operatorname{c}(y_i) ,$$

where the weights $\alpha:\mathcal{X}\rightarrow\mathbb{R}^n$ are such that

$$\alpha(x) = (\alpha_1(x), \dots, \alpha_n(x))^\top = \underbrace{[X(X^\top X + n\lambda I)^{-1}]}_{d \times d \text{matrix!}} x \in \mathbb{R}^n.$$

Or, if we have a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

$$\alpha(x) = (K + n\lambda I)^{-1} \mathbf{v}(x) \in \mathbb{R}^n.$$

 $- K \in \mathbb{R}^{n \times n} \text{ kernel matrix } K_{ij} = k(x_i, x_j)$ - $v(x) \in \mathbb{R}^n$ evaluation vector $v(x)_i = k(x_i, x)$. Therefore, analogously to the finite case...

$$\widehat{f}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \quad \langle \mathsf{c}(y), V \ \widehat{g}(x) \rangle$$
$$= \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \alpha_{i}(x) \underbrace{\langle \mathsf{c}(z), V\mathsf{c}(y_{i}) \rangle}_{\substack{\ell(z, y_{i}) \\ \text{loss trick}}}$$

In other words,

$$\widehat{f}(x) = \operatorname*{argmin}_{z \in \mathcal{Y}} \sum_{i=1}^{n} \alpha_i(x) \ \ell(z, y_i)$$

$$\widehat{f}(x) = \operatorname*{argmin}_{z \in \mathcal{Y}} \sum_{i=1}^{n} \alpha_i(x) \ \ell(z, y_i)$$

Analogous to the "kernel trick", the implicit embedding enables us to find an estimator $\widehat{f}: \mathcal{X} \to \mathcal{Y}...$

without need for explicit knowledge of (\mathcal{H}, c, V) !

Implicit Embeddings and Surrogate Methods

Implicit embeddings naturally induce a surrogate framework:

- Encoding. $c: \mathcal{Y} \to \mathcal{H}$,
- Loss. $\mathcal{L}(g(x), c(y)) = ||g(x) c(y)||_{\mathcal{H}}^2$,
- **Decoding.** $d: \mathcal{H} \to \mathcal{Y}$ such that for any $h \in \mathcal{H}$

$$\mathsf{d}(h) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ \langle \mathsf{c}(z), Vh \rangle_{\mathcal{H}}$$

Q: do Fischer consistency and a comparison inequality hold?

Fischer Consistency & Comparison Inequality

Fischer Coinsistency. We get it for free...

$$f^{\star}(x) = \mathsf{d}(g^{\star}(x)) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ \langle \mathsf{c}(z), V \ g^{\star}(x) \rangle_{\mathcal{H}}$$

Fischer Consistency & Comparison Inequality

Fischer Coinsistency. We get it for free...

$$f^{\star}(x) = \mathsf{d}(g^{\star}(x)) = \operatorname*{argmin}_{z \in \mathcal{Y}} \langle \mathsf{c}(z), V \ g^{\star}(x) \rangle_{\mathcal{H}}$$

Comparison Inequality. We have the following...

Theorem [Ciliberto et al., 2016] Let ℓ admit an implicit embedding $(\mathcal{H}, \mathsf{c}, V)$. Then, for any measurable $g : \mathcal{X} \to \mathcal{H}$

$$\mathcal{E}(\mathsf{d} \circ g) - \mathcal{E}(f^{\star}) \leq \mathsf{q}_{\ell} \sqrt{\mathcal{R}(g) - \mathcal{R}(g^{\star})}$$

with $q_{\ell} = 2 \sup_{y \in \mathcal{Y}} ||Vc(y)||_{\mathcal{H}}$.

We can borrow from the literature on vector-valued regression [Caponnetto and De Vito, 2007] to study $\widehat{g}.$

Theorem (Universal Consistency). Let \mathcal{X}, \mathcal{Y} compact ℓ admit an implicit embedding and $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a universal kernel¹. Choose $\lambda = n^{-1/2}$ to train \widehat{f} . Then,

 $\lim_{n \to +\infty} \mathcal{E}(\hat{f}) - \mathcal{E}(f^{\star}) = 0,$

with probability 1.

¹Technical requirement. Use e.g. the Gaussian kernel $k(x,x') = e^{-\left\|x-x'\right\|^2/\sigma}$

Learning Rates

Theorem (Learning Rates). Let \mathcal{X}, \mathcal{Y} compact ℓ admit an implicit embedding. Choose $\lambda = n^{-1/2}$ to train \widehat{f} . Then, $\forall \delta \in (0, 1)$

$$\mathcal{E}(\widehat{f}) - \mathcal{E}(f^{\star}) \le \mathsf{q}_{\ell} \log(1/\delta) \frac{1}{n^{1/4}},$$

hold with probability at least $1 - \delta$.

Learning Rates

Theorem (Learning Rates). Let \mathcal{X}, \mathcal{Y} compact ℓ admit an implicit embedding. Choose $\lambda = n^{-1/2}$ to train \widehat{f} . Then, $\forall \delta \in (0, 1)$

$$\mathcal{E}(\widehat{f}) - \mathcal{E}(f^{\star}) \le \mathsf{q}_{\ell} \log(1/\delta) \frac{1}{n^{1/4}},$$

hold with probability at least $1 - \delta$.

Comments.

- Same rates as worst-case binary classification (better rates with Tsibakov-like noise assumptions [Nowak-Vila et al., 2018]).
- Adaptive w.r.t. q_l (it automatically chooses the "best" surrogate framework).

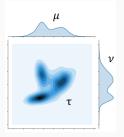
Example Applications

Predicting Probability Distributions [Luise, Rudi, Pontil, Ciliberto '18]

Setting: $\mathcal{Y} = \mathcal{P}(\mathbb{R}^d)$ probability distributions on \mathbb{R}^d .

Loss: Wasserstein distance

$$\ell(\mu, \nu) = \min_{\tau \in \Pi(\mu, \nu)} \int ||z - y||^2 d\tau(x, y)$$



Digit Reconstruction

	Reconstruction Error (%)				
$\alpha \sim \alpha$	# Classes	Ours	\widetilde{S}_{λ}	Hell	KDE
?	2	$\textbf{3.7} \pm \textbf{0.6}$	4.9 ± 0.9	8.0 ± 2.4	12.0 ± 4.1
		$\textbf{22.2} \pm \textbf{0.9}$			
	10	$\textbf{38.9} \pm \textbf{0.9}$	44.9 ± 2.5	48.3 ± 2.4	64.9 ± 1.4

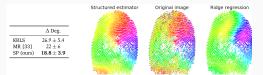
Setting: \mathcal{Y} Riemmanian manifold.

Loss: (squared) geodesic distance.

Optimization: Riemannian GD.

Fingerprint Reconstruction

 $(\mathcal{Y} = S^1 \text{ sphere})$



Multi-labeling

 $(\mathcal{Y} \text{ statistical manifold})$

	KRLS	SP (Ours)
Emotions	0.63	0.73
CAL500	0.92	0.92
Scene	0.62	0.73

Idea: instead of solving multiple learning problems (tasks) separately, *leverage the potential relations among them.*

Previous Methods: only imposing/learning linear tasks relations.

Unable to cope with non-linear constraints (e.g. ranking, robotics, etc.).

MTL+Structured Prediction

- Interpret multiple tasks as separate outputs.
- Impose constraints as structure on the joint output.



movielen

user:id

28

Wrapping up...

Structured prediction poses hard optimization/modeling/statistical challenges. We have seen two main strategies:

- Likelihood Estimation. Flexible yet lacking theory.
- Surrogate Methods. Theoretically sound but not flexible.

By leveraging the concept of *Implicit Embeddings* we found a synthesis between these two strategies:

- Flexible. Can be applied to any ℓ admitting an implicit embedding.
- **Optimization.** Requires a minimization over \mathcal{Y} only at test time.
- Sound. We have consistency and learning rates.

Additional Work

Case studies:

- Learning to rank [Korba et al., 2018]
- Output Fisher Embeddings [Djerrab et al., 2018]
- $\mathcal{Y} = \text{manifolds}, \ \ell = \text{geodesic distance [Rudi et al., 2018]}$
- $\mathcal{Y} =$ probability space, $\ell =$ wasserstein distance [Luise et al., 2018]

Refinements of the analysis:

- Alternative derivations [Osokin et al., 2017]
- Discrete loss [Nowak-Vila et al., 2018, Struminsky et al., 2018]

Extensions:

- Application to multitask-learning [Ciliberto et al., 2017]
- Beyond least squares surrogate [Nowak-Vila et al., 2019]
- Regularizing with trace norm [Luise et al., 2019]

References i

- Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and Vishwanathan, S. V. N. (2007). *Predicting Structured Data*. MIT Press.
- Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification, and risk bounds. *Journal of the American Statistical Association*, 101(473):138–156.
- Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7(3):331–368.
- Ciliberto, C., Rosasco, L., and Rudi, A. (2016). A consistent regularization approach for structured prediction. Advances in Neural Information Processing Systems 29 (NIPS), pages 4412–4420.
- Ciliberto, C., Rudi, A., Rosasco, L., and Pontil, M. (2017). Consistent multitask learning with nonlinear output relations. In Advances in Neural Information Processing Systems, pages 1983–1993.
- Djerrab, M., Garcia, A., Sangnier, M., and d'Alché Buc, F. (2018). Output fisher embedding regression. *Machine Learning*, 107(8-10):1229–1256.

References ii

- Duchi, J. C., Mackey, L. W., and Jordan, M. I. (2010). On the consistency of ranking algorithms. In *Proceedings of the International Conference on Machine Learning* (*ICML*), pages 327–334.
- Korba, A., Garcia, A., and d'Alché Buc, F. (2018). A structured prediction approach for label ranking. In Advances in Neural Information Processing Systems, pages 8994–9004.
- Luise, G., Rudi, A., Pontil, M., and Ciliberto, C. (2018). Differential properties of sinkhorn approximation for learning with wasserstein distance. In Advances in Neural Information Processing Systems, pages 5859–5870.
- Luise, G., Stamos, D., Pontil, M., and Ciliberto, C. (2019). Leveraging low-rank relations between surrogate tasks in structured prediction. *International Conference* on Machine Learning (ICML).
- Mroueh, Y., Poggio, T., Rosasco, L., and Slotine, J.-J. (2012). Multiclass learning with simplex coding. In Advances in Neural Information Processing Systems (NIPS) 25, pages 2798–2806.
- Nowak-Vila, A., Bach, F., and Rudi, A. (2018). Sharp analysis of learning with discrete losses. *AISTATS*.

References iii

- Nowak-Vila, A., Bach, F., and Rudi, A. (2019). A general theory for structured prediction with smooth convex surrogates. *arXiv preprint arXiv:1902.01958*.
- Osokin, A., Bach, F., and Lacoste-Julien, S. (2017). On structured prediction theory with calibrated convex surrogate losses. In Advances in Neural Information Processing Systems, pages 302–313.
- Rudi, A., Ciliberto, C., Marconi, G., and Rosasco, L. (2018). Manifold structured prediction. In Advances in Neural Information Processing Systems, pages 5610–5621.
- Song, L., Huang, J., Smola, A., and Fukumizu, K. (2009). Hilbert space embeddings of conditional distributions with applications to dynamical systems. In *Proceedings* of the 26th Annual International Conference on Machine Learning, pages 961–968. ACM.
- Struminsky, K., Lacoste-Julien, S., and Osokin, A. (2018). Quantifying learning guarantees for convex but inconsistent surrogates. In Advances in Neural Information Processing Systems, pages 669–677.
- Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin methods for structured and interdependent output variables. volume 6, pages 1453–1484.