
Transforming task 
representations to allow 
deep learning models to 
perform novel tasks

Andrew K. Lampinena & James L. McClelland



Summary

Goal: enable zero-shot generalisation to novel tasks

Learn vector-based task representations

Learn “meta-mappings” (higher order tasks) that transform 
task representations

Demonstrate on regression, image classification, and 
reinforcement learning



Zero-shot task adaptation

If I tell you to lose at poker, you would do well at this task 
despite only trying to win in the past

ML models can’t deal with this, especially if the task is the 
opposite

Idea: condition behaviour on tasks, and learn relationships 
between tasks

Can use natural language, or infer tasks using meta-learning



Meta-Mappings

Learn to perform tasks

Learn mapping from task to task

Apply mapping for zero-shot 

adaptation

Tasks are input-output mappings, and 

so are meta-mappings, so can use 

same networks (same parameters) 

for both!



Input-Output Mappings

Tasks are I-O functions: image -> label, chessboard -> move

Meta-mappings are I-O functions: task -> task

Example: “lose” meta-mapping: win poker -> lose poker



Homoiconicity

Homoiconic programming languages are where programs can 
be manipulated in the same way as data

Same hypernetwork takes task/meta-mapping embedding as 
input to create task network weights

Future work could allow further recursion



Constructing Task Representations

Language-based: use an RNN

Example-based: use a network that is 

set-invariant (e.g. uses max operator)



Performing Tasks

Domain-agnostic task network has 

weights from hypernetwork 

conditioned on task embedding

Task network receives inputs from 

domain-specific perception network 

and outputs to domain-specific action 

network

Trained end-to-end on task loss 

(regression, classification, etc.)



Constructing Meta-Mappings

Analogous to constructing basic task 

representations

Use the same networks/parameters, 

so everything maps to the same space

Trained by minimising L2 distance of 

task embedding with mapping versus 

target task embedding e.g. 

min_L2(lose(hearts) - lose_hearts)



Transforming Tasks

Use the task network directly to 

perform meta-mappings

Used in meta-learning outer loop



Training

Inference (black lines) and gradients 

(red lines)

Meta-mapping gradients were 

stopped at task embeddings because 

of computational bottleneck



Experiments

4 different domains/3 task types

Test zero-shot task generalisation e.g. 

lose(poker)

Test meta-mapping generalisation 

e.g. train R->B, G->Y, test R->Y

Test language-based generalisation



Polynomials

Task is polynomial regression, 

meta-mapping is addition / 

multiplication / squaring / 

permutation

New meta-mappings e.g. train on 

some permutations, evaluate on 

held-out permutations using example 

network



Card Games

Regress bet given cards (map state to 

action and reward)

36 training tasks (win/lose card 

games), test on losing poker

Example-based generalises, humans 

generalise, language-based does not 

(likely not strong enough inductive 

bias + little training data)



Visual Concepts

Binary classification of concept based 

on shape, colour and/or size e.g. 

triangle AND red

Meta-mappings for switching shape / 

colour

Example-based and language-based 

generalise

Meta-mapping generalisation 

improves with training samples



Reinforcement Learning

Pick up or push off target object (+ 

reward), distractor object (- reward)

18 training tasks, 2 test

Example-based generalises, 

language-based does not 



Transfer Learning

Keep domain-specific (perception 

and action) networks fixed, optimise 

task embedding

Prevents interfering with prior 

knowledge!

Meta-mapping initialisation is best



Connections

Zero-shot language-based adaptation, meta-learning, task 
embeddings

Systematic, structured generalisation through learning

“our shared workspace for data points, tasks, and 
meta-mappings connects to ideas like the Global Workspace 
Theory of consciousness”

“modularity may not be built in [but] may result from the 
relationship among representations”


