View on GitHub

Machine learning reading group

Imperial College London

Welcome to the homepage of the Imperial College London Computational Statistics and Machine Learning reading group. We meet Thursdays at 16:00 in Huxley 218 or online on MS Teams.

To get the latest updates, sign up to the mailing list.

2024-2025

Date Presenter Paper Author(s) Notes
23/01/25 Hamidreza Kamkari A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models Hamidreza et al.  
28/11/24 Jiajun He, Wenlin Chen, Mingtian Zhang Training Neural Samplers with Reverse Diffusive KL Divergence Jiajun He et al.  
21/11/24 Shavindra Jayasekera TBD    
07/11/24 Michael Li Multistage Learning in Reproducing Kernel Hilbert Space Michael Li et al.  
17/10/24 Yingzhen Li Martingale posterior distributions Edwin Fong et al. slides

2023-2024

Date Presenter Paper Author(s) Notes
13/06/24 Jiayi Shen Probabilistic Modeling for Knowledge Transfer    
21/03/24 Mengyue Yang Invariant Learning via Probability of Sufficient and Necessary Causes Mengyue Yang et al.  
07/03/24 Naoki Kiyohara Beyond Attention: Unravelling the Potential of State Space Models for Sequential Data Processing   slides
29/02/24 Xiongjie Chen Augmented Sliced Wasserstein Distances Xiongjie Chen et al.  
08/02/24 Aras Selvi Extending the Scope of Wasserstein Machine Learning    
01/02/24 Matthieu Meeus Did the Neurons Read Your Book? Document-level Membership Inference for LLMs Matthieu Meeus et al.  
25/01/24 Mingxuan Yi Divergence Minimizations: From Sample Space to Parameter Space    
18/01/24 T. Anderson Keller Traveling Waves in Brains and Machines    
07/12/23 Fabrizio Russo Shapley-PC: Constraint-based Causal Structure Learning with Shapley Values    
30/11/23 Xavier Sumba-Toral Connecting the dots: a journey of message passing in PGMs and MPNNs for approximate inference    
23/11/23 Guoxuan Xia Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep Ensembles are More Efficient than Single Models Guoxuan Xia et al.  
16/11/23 Tobias Schroeder Energy Discrepancy: Fast Training of Energy-Based Models without MCMC Tobias Schroeder et al.  
09/11/23 Stathi Fotiadis Image generation with shortest path diffusion Ayan Das et al.  
02/11/23 Tim Z. Xiao What do we want from a generative model and how do we get it from a VAE?    
26/10/23 Yingzhen Li On the Identifiability of Markov Switching Models Carles Balsells-Rodas et al.  

2022-2023

Date Presenter Paper Author(s) Notes
13/07/23 Jin Xu Deep Stochastic Processes via Functional Markov Transition Operators Jin Xu et al.  
01/06/23 Dinghuai Zhang GFlowNets: Exploration for Structured Probabilistic Inference   slides
25/05/23 Jiaye Teng Predictive Inference with Feature Conformal Prediction Jiaye Teng et al.  
11/05/23 Panagiotis Tigas Differentiable Multi-Target Causal Bayesian Experimental Design Yashas Annadani et al.  
06/04/23 Fadhel Ayed Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning Francois Caron et al.  
30/03/23 Zijing Ou The modern arts of discrete EBMs training and inference   slides
23/03/23 Nihir Vedd, Zijing Ou, and Xing Liu Casual discussion about the indication of GPT-4 to AI developments and research    
09/03/23 Martin Jørgensen Bézier Gaussian Processes for Tall and Wide Data Martin Jørgensen et al.  
02/03/23 Jose Folch Neural Diffusion Process Vincent Dutordoir et al.  
23/02/23 Guoxuan Xia Augmenting Softmax Information for Selective Classification with Out-of-Distribution Data Guoxuan Xia et al.  
16/02/23 Max Weissenbacher Heating up decision boundaries: isocapacitory saturation, adversarial scenarios and generalization bounds Bogdan Georgiev et al.  
09/02/23 Cristopher Salvi Recent developments in signature kernel methods    
19/01/23 Vahid Balazadeh Partial Identification of Treatment Effects with Implicit Generative Models Vahid Balazadeh et al.  
24/11/22 Harrison Zhu Diffusion Models from an SDE Perspective    
17/11/22 Wenlin Chen Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction Wenlin Chen et al.  
10/11/22 Kevin H. Huang Quantifying the Effects of Data Augmentation Kevin H. Huang et al.  
03/11/22 Anish Dhir Combiner: Full Attention Transformer with Sparse Computation Cost Hongyu Ren et al.  
27/10/22 Tycho van der Ouderaa Pathfinder: Parallel quasi-Newton variational inference Lu Zhang et al.  

2021-2022

Date Presenter Paper Author(s) Notes
23/06/22 Carles B. Rodas Nonlinear ICA   slides
16/06/22 Tycho van der Ouderaa Modern Laplace Approximations for Deep Learning    
09/06/22 Hamzah Hashim and Alexander Pondaven Convolutional Neural Processes for Inpainting Satellite Images    
19/05/22 Wenlong Chen Tutorial on (Stochastic Gradient) MCMC    
12/05/22 Artem Artemev Adaptive Cholesky Gaussian Processes Simon Bartels et al.  
05/05/22 Galen Wilkerson Spontaneous Emergence of Computation in Network Cascades    
28/04/22 Anish Dhir Out of distribution generalisation using calibration    

2020-2021

Date Presenter Paper Author(s) Notes
09/07/21 Yanni Papandreou On Mahalanobis distance in functional settings Berrendero et al.  
02/07/21 Cris Salvi On signature methods    
25/06/21 Adam Howes Small-area estimation with aggregated Gaussian processes Adam Howes  
18/06/21 Juliette Unwin Multilevel Monte Carlo methods Michael B. Giles  
11/06/21 Michael Komodromos Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap Edwin Fong et al.  
04/06/21 Harrison Zhu Multi-resolution Spatial Regression for Aggregated Data with an Application to Crop Yield Prediction Harrison Zhu et al.  
28/05/21 Andrew Connell Detecting changes in mean in the presence of time‐varying autocovariance Euan T. McGonigle et al..  
21/05/21        
14/05/21 George Wynne CovNet: Covariance Networks for Functional Data on Multidimensional Domains    
07/05/21 Isak Falk      
30/04/21 Swapnil Mishra      
23/04/21 Tim Wolock      
16/04/21 Thomas Mellan Gaussian Process Nowcasting: Application to COVID-19 Mortality Reporting    
09/04/21 Tresnia Berah Validated Variational Inference via Practical Posterior Error Bounds    
02/04/21 break      
26/03/21 Harrison Zhu Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm    
19/03/21 Xenia Miscouridou Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data    
26/02/21 Michael Gaussian Processes for Survival Analysis Tamara Fernández  
19/02/21        
12/02/21 Jonathan Image Representations Learned With Unsupervised Pre-Training Contain Human-like Biases Ryan Steed & Aylin Caliskan  
05/02/21 Adriaan Convolutional Gaussian Processes Mark van der Wilk et al.  
29/01/21 Kate Optimal Transport for Domain Adaptation Nicolas Courty et al.  
break        
04/12/20 Jonathan Bayesian Deep Ensembles via the Neural Tangent Kernel Bobby He, Balaji Lakshminarayanan and Yee Whye Teh  
27/11/20 Kai Training Agents using Upside-Down Reinforcement Learning Rupesh Kumar Srivastava et al.  
20/11/20 James Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection Sanghong Kim et al.  
13/11/20 Daniel GENNI: Visualising the Geometry of Equivalences for Neural Network Identifiability Daniel Lengyel et al.  
06/11/20 Janith Meta-Learning Symmetries by Reparameterization Allan Zhou, Tom Knowles & Chelsea Finn  
break        
23/10/20 Kate A continual learning survey: Defying forgetting in classification tasks Matthias De Lange et al. An Introduction to Continual Learning
16/10/20 Hans JDINAC: joint density-based non-parametric differential interaction network analysis and classification using high-dimensional sparse omics data Jiadong Ji et al.  
09/10/20 Joe Avoiding the Hypothesis-Only Bias in Natural Language Inference via Ensemble Adversarial Training Joe Stacey et al.  
02/10/20        

2019-2020

Date Presenter Paper Author(s) Notes
17/10/19 George Approximate Inference Turns Deep Networks into Gaussian Processes Mohammad Emtiyaz Khan et al.  
24/10/19 Onur Random Tessellation Forests Shufei Ge et al.  
31/10/19 Arinbjörn A Scalable Laplace Approximation for Neural Networks Hippolyt Ritter, Aleksandar Botev and David Barber  
07/11/19 Kate Reconciling modern machine learning practice and the bias-variance trade-off Mikhail Belkin, Daniel Hsu, Siyuan Ma and Soumik Mandal  
14/11/19 Alex An explicit link between Gaussian fields and Gaussian Markov random fields: The SPDE approach Finn Lindgren, Håvard Rue and Johan Lindström  
21/11/19 Sesh Lost Relatives of the Gumbel Trick Matej Balog et al.  
Break for workshop        
05/12/19 Daniel Modelling the Dynamics of Multiagent Q-Learning in Repeated Symmetric Games: a Mean Field Theoretic Approach Shuyue Hu, Chin-Wing Leung, Ho-fung Leung  
12/12/19 Tim A Model to Search for Synthesizable Molecules John Bradshaw et al.  
Break        
20/01/20 Jonathan The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions Raj Agrawal et al.  
31/01/20 Emily Boosting Variational Inference Guo et al.  
07/02/20 George Determinantal point processes for machine learning (chapters 2 and 4) Alex Kulesza and Ben Taskar  
14/02/20 Kate On Bayesian new edge prediction and anomaly detection in computer networks Silvia Metelli and Nicholas Heard  
21/02/20        
28/02/20 Adriaan A scalable bootstrap for massive data Ariel Kleiner et al.  
06/03/20 Isak Super-Samples from Kernel Herding Yutian Chen, Max Welling and Alex Smola  
13/03/20 break      
20/03/20 Jonathan & Arinbjörn Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis Angelos Filos et al.  
27/03/20 Kate Integrated Clustering and Anomaly Detection (INCAD) for Streaming Data Sreelekha Guggilam et al.  
03/04/20 Emily Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders Nat Dilokthanakul et al.  
10/04/20 break      
17/04/20 Daniel Exploring Generalization in Deep Learning Neyshabur et al.  
24/04/20 Jonathan Unsupervised Data Augmentation for Consistency Training Qizhe Xie et al.  
01/05/20 Kai Discovering the Compositional Structure of Vector Representations with Role Learning Networks Paul Soulos et al. Slides
08/05/20 Bank holiday break      
15/05/20 Sesh Alleviating Label Switching with Optimal Transport Pierre Monteiller et al.  
22/05/20 Hans A latent Markov model for detecting patterns of criminal activity Francesco Bartolucci et al.  
29/05/20 Isak Introduction to Coresets: Accurate Coresets Ibrahim Jubran et al. Slides
05/06/20 Adriaan Weight Uncertainty in Neural Networks Charles Blundell et al.  
12/06/20 Kai The frontier of simulation-based inference Kyle Cranmer et al. Slides
19/06/20 Daniel Sharp Minima Can Generalize For Deep Nets Laurent Dinh et al.  
26/06/20 Janith A General Theory of Equivariant CNNs on Homogeneous Spaces Taco S. Cohen, Mario Geiger & Maurice Weiler  
03/07/20 Alex On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis & Volkan Cevher  
10/07/20 Kate Nonparametric Variational Auto-encoders for Hierarchical Representation Learning Prasoon Goyal et al.  
17/07/20 Harrison Bayesian Probabilistic Numerical Integration with Tree-Based Models Harrison Zhu et al.  
24/07/20 Zaf Deep active inference agents using Monte-Carlo methods Zafeirios Fountas et al.  
31/07/20 Kai Transforming task representations to allow deep learning models to perform novel tasks Andrew K. Lampinen & James L. McClelland Slides
07/08/20 Aravind Estimation and Inference of Heterogeneous Treatment Effects using Random Forests Stefan Wager & Susan Athey  
14/08/20 Summer break      
21/08/20 Summer break      
28/08/20 Adriaan Monte Carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs Gerd Infanger Whiteboard notes
04/09/20 Jonathan NGBoost: Natural Gradient Boosting for Probabilistic Prediction Tony Duan et al.  
11/09/20 Chatura Probabilistic Value-Deviation-Bounded Integer Codes for Approximate Communication Phillip Stanley-Marbell & Paul Hurley  
18/09/20        
25/09/20 Janith On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups Risi Kondor & Shubhendu Trivedi