pyprobe.cell module#
Module for the Cell class.
- pydantic model Cell(*, info, procedure=<factory>)#
Bases:
BaseModel
A class for a cell in a battery experiment.
- Parameters:
info (dict[str, Any | None])
procedure (Dict[str, Procedure])
- Return type:
None
- field info: dict[str, Any | None] [Required]#
Dictionary containing information about the cell. The dictionary must contain a ‘Name’ field, other information may include channel number or other rig information.
- field procedure: Dict[str, Procedure] [Optional]#
Dictionary containing the procedures that have been run on the cell.
- process_cycler_file(cycler, folder_path, input_filename, output_filename, filename_inputs=None, compression_priority='performance', overwrite_existing=False)#
Convert a file into PyProBE format.
- Parameters:
cycler (Literal['neware', 'biologic', 'biologic_MB', 'arbin', 'basytec', 'maccor', 'generic']) – The cycler used to produce the data.
folder_path (str) – The path to the folder containing the data file.
input_filename (str | Callable[[str], str]) – A filename string or a function to generate the file name for cycler data.
output_filename (str | Callable[[str], str]) – A filename string or a function to generate the file name for PyProBE data.
filename_inputs (List[str] | None) – The list of inputs to input_filename and output_filename, if they are functions. These must be keys of the cell info.
compression_priority (Literal['performance', 'file size', 'uncompressed']) – The priority of the compression algorithm to use on the resulting parquet file. Available options are: - ‘performance’: Use the ‘lz4’ compression algorithm (default). - ‘file size’: Use the ‘zstd’ compression algorithm. - ‘uncompressed’: Do not use compression.
overwrite_existing (bool) – If True, any existing parquet file with the output_filename will be overwritten. If False, the function will skip the conversion if the parquet file already exists.
- Return type:
None
- process_generic_file(folder_path, input_filename, output_filename, column_dict, header_row_index=0, date_column_format=None, filename_inputs=None, compression_priority='performance')#
Convert generic file into PyProBE format.
- Parameters:
folder_path (str) – The path to the folder containing the data file.
input_filename (str | function) – A filename string or a function to generate the file name for the generic data.
output_filename (str | function) – A filename string or a function to generate the file name for PyProBE data.
column_dict (dict) – A dictionary mapping the column names in the generic file to the PyProBE column names. The keys of the dictionary are the cycler column names and the values are the PyProBE column names. You must use asterisks to indicate the units of the columns. E.g.
{"V (*)": "Voltage [*]"}
.header_row_index (int, optional) – The index of the header row in the file. Defaults to 0.
date_column_format (str, optional) – The format of the date column in the generic file. Defaults to None.
filename_inputs (list) – The list of inputs to input_filename and output_filename. These must be keys of the cell info.
compression_priority (Literal['performance', 'file size', 'uncompressed']) – The priority of the compression algorithm to use on the resulting parquet file. Available options are: - ‘performance’: Use the ‘lz4’ compression algorithm (default). - ‘file size’: Use the ‘zstd’ compression algorithm. - ‘uncompressed’: Do not use compression.
- Return type:
None
- add_procedure(procedure_name, folder_path, filename, filename_inputs=None, readme_name='README.yaml')#
Add data in a PyProBE-format parquet file to the procedure dict of the cell.
- Parameters:
procedure_name (str) – A name to give the procedure. This will be used when calling
cell.procedure[procedure_name]
.folder_path (str) – The path to the folder containing the data file.
filename (str | function) – A filename string or a function to generate the file name for PyProBE data.
filename_inputs (Optional[list]) – The list of inputs to filename_function. These must be keys of the cell info.
readme_name (str, optional) – The name of the readme file. Defaults to “README.yaml”. It is assumed that the readme file is in the same folder as the data file.
- Return type:
None
- quick_add_procedure(procedure_name, folder_path, filename, filename_inputs=None)#
Add data in a PyProBE-format parquet file to the procedure dict of the cell.
This method does not require a README file. It is useful for quickly adding data but filtering by experiment on the resulting object will not be possible.
- Parameters:
procedure_name (str) – A name to give the procedure. This will be used when calling
cell.procedure[procedure_name]
.folder_path (str) – The path to the folder containing the data file.
filename (str | function) – A filename string or a function to generate the file name for PyProBE data.
filename_inputs (Optional[list]) – The list of inputs to filename_function. These must be keys of the cell info.
- Return type:
None
- import_pybamm_solution(procedure_name, experiment_names, pybamm_solutions, output_data_path=None, optional_variables=None)#
Import a PyBaMM solution object into a procedure of the cell.
Filtering a PyBaMM solution object by cycle and step reflects the behaviour of the
cycles
andsteps
dictionaries of the PyBaMM solution object.Multiple experiments can be imported into the same procedure. This is achieved by providing multiple solution objects and experiment names.
This method optionally writes the data to a parquet file, if a data path is provided.
- Parameters:
procedure_name (str) – A name to give the procedure. This will be used when calling
cell.procedure[procedure_name]
.pybamm_solutions (list or pybamm_solution) – A list of PyBaMM solution objects or a single PyBaMM solution object.
experiment_names (list or str) – A list of experiment names or a single experiment name to assign to the PyBaMM solution object.
output_data_path (str, optional) – The path to write the parquet file. Defaults to None.
optional_variables (list, optional) – A list of variables to import from the PyBaMM solution object in addition to the PyProBE required variables. Defaults to None.
- Return type:
None
- archive(path)#
Archive the cell object.
- Parameters:
path (str) – The path to the archive directory or zip file.
- Return type:
None
- load_archive(path)#
Load a cell object from an archive.
- Parameters:
path (str) – The path to the archive directory.
- Returns:
The cell object.
- Return type:
- make_cell_list(record_filepath, worksheet_name, header_row=0)#
Function to make a list of cell objects from a record of tests in Excel format.
- Parameters:
record_filepath (str) – The path to the experiment record .xlsx file.
worksheet_name (str) – The worksheet name to read from the record.
header_row (int, optional) – The row number containing the column headers. Defaults to 0.
- Returns:
The list of cell objects.
- Return type:
list