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Chapter 1

Introduction

Fermat’s Last Theorem is the statement that if 𝑎, 𝑏, 𝑐, 𝑛 are positive whole numbers with
𝑛 ≥ 3, then 𝑎𝑛 + 𝑏𝑛 ≠ 𝑐𝑛. It is thus a statement about a family of Diophantine equations
(𝑎3 + 𝑏3 = 𝑐3, 𝑎4 + 𝑏4 = 𝑐4, …). Diophantus was a Greek mathematician who lived around
1800 years ago, and he would have been able to understand the statement of the theorem
(he knew about positive integers, addition and multiplication).

Fermat’s Last Theorem was explicitly raised by Fermat in 1637, and was proved by Wiles
(with the proof completed in joint work with Taylor) in 1994. There are now several proofs
but all of them go broadly in the same direction, using elliptic curves and modular forms.

Explaining a proof of Fermat’s Last Theorem to Lean is in some sense like explaining
the proof to Diophantus; for example, the proof starts by observing that before we go any
further it’s convenient to first invent/discover zero and negative numbers, and one can point
explicitly at places in Lean’s source code here and here where these things happen. However
we will adopt a more efficient approach: we will assume all of the theorems both in Lean
and in its mathematics library mathlib, and proceed from there. To give some idea of what
this entails: mathlib at the time of writing contains most of an undergraduate mathematics
degree and parts of several relevant Masters level courses (for example, the definitions and
basic properties of elliptic curves and modular forms are in mathlib). Thus our task can be
likened to teaching a graduate level course on Fermat’s Last Theorem to a computer.

The proof explained in these notes was constructed by Taylor, taking into account Buz-
zard’s comments on what would be easy or hard to do in Lean. The proof uses refinements
of the original Taylor-Wiles method by Diamond/Fujiwara, Khare-Wintenberger, Skinner-
Wiles, Kisin, Taylor and others – one could call it a 21st century proof of the theorem. We
shall explain more about the exact path we’re taking in Chapter 4. But before we go into
those technical details, we can enjoy some of the more basic arguments at the start of the
proof. And the proof starts, as every known proof does, with some basic reductions and the
introduction of a certain elliptic curve. We explain this in the next chapter.
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Chapter 2

First reductions of the problem

2.1 Overview
The proof of Fermat’s Last Theorem is by contradiction. We assume that we have a coun-
terexample 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛, and manipulate it until it satisfies the axioms of a “Frey package”.
From the Frey package we build a Frey curve – an elliptic curve defined over the ratio-
nals. We then look at a certain representation of a Galois group coming from this elliptic
curve, and finally using two very deep and independent theorems (one due to Mazur, the
other due to Wiles) we show that this representation is neither reducible or irreducible, a
contradiction.

2.2 Reduction to 𝑛 ≥ 5 and prime
Lemma 2.1. If there is a counterexample to Fermat’s Last Theorem, then there is a coun-
terexample 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝 with 𝑝 an odd prime.

Proof. Note: this proof is in mathlib already; we run through it for completeness’ sake.
Say 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 is a counterexample to Fermat’s Last Theorem. Every positive integer

is either a power of 2 or has an odd prime factor. If 𝑛 = 𝑘𝑝 has an odd prime factor
𝑝 then (𝑎𝑘)𝑝 + (𝑏𝑘)𝑝 = (𝑐𝑘)𝑝 is the counterexample we seek. It remains to deal with the
case where 𝑛 is a power of 2, so let’s assume this. We have 3 ≤ 𝑛 by assumption, so
𝑛 = 4𝑘 must be a multiple of 4, and thus (𝑎𝑘)4 = (𝑏𝑘)4 = (𝑐𝑘)4, giving us a counterexample
to Fermat’s Last Theorem for 𝑛 = 4. However an old result of Fermat himself (proved as
fermatLastTheoremFour in mathlib) says that 𝑥4 +𝑦4 = 𝑧4 has no nontrivial solutions.

Euler proved Fermat’s Last Theorem for 𝑝 = 3; at the time of writing this is not in
mathlib.

Lemma 2.2. There are no solutions in positive integers to 𝑎3 + 𝑏3 = 𝑐3.

Proof. A proof has been formalised in Lean in the FLT-regular project here. Another proof
has been formalised in Lean in the FLT3 project here by a team from the Lean For the
Curious Mathematician conference held in Luminy in March 2024 (its dependency graph
can be visualised here). To get this node green, this latter proof needs to be upstreamed to
mathlib. This is currently work in progress by the same team.
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Corollary 2.3. If there is a counterexample to Fermat’s Last Theorem, then there is a
counterexample 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝 with 𝑝 prime and 𝑝 ≥ 5.

Proof. Follows from the previous two lemmas.

2.3 Frey packages
For convenience we make the following definition.

Definition 2.4. A Frey package (𝑎, 𝑏, 𝑐, 𝑝) is three pairwise-coprime nonzero integers 𝑎, 𝑏,
𝑐, with 𝑎 ≡ 3 (mod 4) and 𝑏 ≡ 0 (mod 2), and a prime 𝑝 ≥ 5, such that 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝.

Our next reduction is as follows:

Lemma 2.5. If Fermat’s Last Theorem is false for 𝑝 ≥ 5 and prime, then there exists a
Frey package.

Proof. Suppose we have a counterexample 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝 for the given 𝑝; we now build a Frey
package from this data.

If the greatest common divisor of 𝑎, 𝑏, 𝑐 is 𝑑 then 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝 implies (𝑎/𝑑)𝑝 + (𝑏/𝑑)𝑝 =
(𝑐/𝑑)𝑝. Dividing through, we can thus assume that no prime divides all of 𝑎, 𝑏, 𝑐. Under
this assumption we must have that 𝑎, 𝑏, 𝑐 are pairwise coprime, as if some prime divides two
of the integers 𝑎, 𝑏, 𝑐 then by 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝 and unique factorization it must divide all three
of them. In particular we may assume that not all of 𝑎, 𝑏, 𝑐 are even, and now reducing
modulo 2 shows that precisely one of them must be even.

Next we show that we can find a counterexample with 𝑏 even. If 𝑎 is the even one then
we can just switch 𝑎 and 𝑏. If 𝑐 is the even one then we can replace 𝑐 by −𝑏 and 𝑏 by −𝑐
(using that 𝑝 is odd).

The last thing to ensure is that 𝑎 is 3 mod 4. Because 𝑏 is even, we know that 𝑎 is odd,
so it is either 1 or 3 mod 4. If 𝑎 is 3 mod 4 then we are home; if however 𝑎 is 1 mod 4 we
replace 𝑎, 𝑏, 𝑐 by their negatives and this is the Frey package we seek.

2.4 Galois representations and elliptic curves
To continue, we need some of the theory of elliptic curves over ℚ. So let 𝑓(𝑋) denote any
monic cubic polynomial with rational coefficients and whose three complex roots are distinct,
and let us consider the equation 𝐸 ∶ 𝑌 2 = 𝑓(𝑋), which defines a curve in the (𝑋, 𝑌 ) plane.
This curve (or strictly speaking its projectivisation) is a so-called elliptic curve (or an elliptic
curve over ℚ if we want to keep track of the field where the coefficients of 𝑓(𝑋) lie). More
generally if 𝑘 is any field then there is a concept of an elliptic curve over 𝑘, again defined by
a (slightly more general) plane cubic curve 𝐹(𝑋, 𝑌 ) = 0.

If 𝐸 is an elliptic curve over a field 𝑘, and if 𝐾 is any field which is a 𝑘-algebra, then we
write 𝐸(𝐾) for the set of solutions to 𝑦2 = 𝑓(𝑥) with 𝑥, 𝑦 ∈ 𝐾, together with an additional
“point at infinity”. It is an extraordinary fact, and not at all obvious, that 𝐸(𝐾) naturally
has the structure of an additive abelian group, with the point at infinity being the zero
element (the identity). Fortunately this fact is already in mathlib. We shall use + to
denote the group law. This group structure has the property that three distinct points
𝑃 , 𝑄, 𝑅 ∈ 𝐾2 which are in 𝐸(𝐾) will sum to zero if and only if they are collinear.

The group structure behaves well under change of field.
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Lemma 2.6. If 𝐸 is an elliptic curve over a field 𝑘, and if 𝐾 and 𝐿 are two fields which
are 𝑘-algebras, and if 𝑓 ∶ 𝐾 → 𝐿 is a 𝑘-algebra homomorphism, the map from 𝐸(𝐾) to 𝐸(𝐿)
induced by 𝑓 is an additive group homomorphism.

Proof. The equations defining the group law are ratios of polynomials with coefficients in 𝑘,
and such things behave well under 𝑘-algebra homomorphisms.

This construction is functorial (it sends the identity to the identity, and compositions to
compositions).

Lemma 2.7. The group homomorphism 𝐸(𝐾) → 𝐸(𝐾) induced by the identity map 𝐾 → 𝐾
is the identity group homomorphism.

Proof. An easy calculation.

Lemma 2.8. If 𝐾 → 𝐿 → 𝑀 are 𝑘-algebra homomorphisms then the group homomorphism
𝐸(𝐾) → 𝐸(𝑀) induced by the map 𝐾 → 𝑀 is the composite of the map 𝐸(𝐾) → 𝐸(𝐿)
induced by 𝐾 → 𝐿 and the map 𝐸(𝐿) → 𝐸(𝑀) induced by the map 𝐿 → 𝑀 .

Proof. Another easy calculation.

Thus if 𝑓 ∶ 𝐾 → 𝐿 is an isomorphism of fields, the induced map 𝐸(𝐾) → 𝐸(𝐿) is an
isomorphism of groups, with the inverse isomorphism being the map 𝐸(𝐿) → 𝐸(𝐾) induced
by 𝑓−1. This construction thus gives us an action of the multiplicative group Aut𝑘(𝐾) of
automorphisms of the field 𝐾 on the additive abelian group 𝐸(𝐾).
Definition 2.9. If 𝐸 is an elliptic curve over a field 𝑘 and 𝐾 is a field and a 𝑘-algebra,
then the group of 𝑘-automorphisms of 𝐾 acts on the additive abelian group 𝐸(𝐾).

In particular, if ℚ denotes an algebraic closure of the rationals (for example, the algebraic
numbers in ℂ) and if Gal(ℚ/ℚ) denotes the group of field isomorphisms ℚ → ℚ, then for any
elliptic curve 𝐸 over ℚ we have an action of Gal(ℚ/ℚ) on the additive abelian group 𝐸(ℚ).

We need a variant of this construction where we only consider the 𝑛-torsion of the curve,
for 𝑛 a positive integer. Recall that if 𝐴 is any additive abelian group, and if 𝑛 is a positive
integer, then we can consider the subgroup 𝐴[𝑛] of elements 𝑎 such that 𝑛𝑎 = 0. If a group 𝐺
acts on 𝐴 via additive group isomorphisms, then there will be an induced action of 𝐺 on
𝐴[𝑛].
Definition 2.10. If 𝐸 is an elliptic curve over a field 𝑘 and 𝐾 is a field and a 𝑘-algebra,
and if 𝑛 is a natural number, then the group of 𝑘-automorphisms of 𝐾 acts on the additive
abelian group 𝐸(𝐾)[𝑛] of 𝑛-torsion points on the curve.

If furthermore 𝑛 = 𝑝 is prime, then 𝐴[𝑝] is naturally a vector space over the field ℤ/𝑝ℤ,
and thus it inherits the structure of a mod 𝑝 representation of 𝐺. Applying this to the above
situation, we deduce that if 𝐸 is an elliptic curve over ℚ then Gal(ℚ/ℚ) acts on 𝐸(ℚ)[𝑝] and
this is the mod 𝑝 Galois representation attached to the curve 𝐸.

In the next section we apply this theory to an elliptic curve coming from a counterexample
to Fermat’s Last theorem.
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2.5 The Frey curve
Definition 2.11 (Frey). Given a Frey package (𝑎, 𝑏, 𝑐, 𝑝), the corresponding Frey curve
(considered by Frey and, before him, Hellegouarch) is the elliptic curve 𝐸 defined by the
equation 𝑌 2 = 𝑋(𝑋 − 𝑎𝑝)(𝑋 + 𝑏𝑝).

Note that the roots of the cubic 𝑋(𝑋−𝑎𝑝)(𝑋+𝑏𝑝) are distinct because 𝑎, 𝑏, 𝑐 are nonzero
and 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝.

Given a Frey package (𝑎, 𝑏, 𝑐, 𝑝) with corresponding Frey curve 𝐸, the mod 𝑝 Galois
representation associated to this package is the representation of Gal(ℚ/ℚ) on 𝐸(ℚ)[𝑝]. Frey’s
observation is that this mod 𝑝 Galois representation has some very surprising properties.
We will make this remark more explicit in the next chapter. Here we shall show how these
properties can be used to finish the job.

2.6 Reduction to two big theorems.
Recall that a representation of a group 𝐺 on a vector space 𝑊 is said to be irreducible if
there are precisely two 𝐺-stable subspaces of 𝑊 , namely 0 and 𝑊 . The representation is
said to be reducible otherwise.

Now say Fermat’s Last Theorem is false, and hence by Lemma 2.5 a Frey package
(𝑎, 𝑏, 𝑐, 𝑝) exists. Consider the mod 𝑝 representation of Gal(ℚ/ℚ) coming from the 𝑝-torsion
in the Frey curve 𝑌 2 = 𝑋(𝑥 − 𝑎𝑝)(𝑋 + 𝑏𝑝) associated to the package. Let’s call this
representation 𝜌. Is it reducible or irreducible?

Theorem 2.12 (Mazur). 𝜌 cannot be reducible.

Proof. This follows from a profound result of Mazur [9] from 1979, namely the fact that the
torsion subgroup of an elliptic curve over ℚ can have size at most 16. In fact a fair amount
of work still needs to be done to deduce the theorem from Mazur’s result. We will have
more to say about this result later.

Theorem 2.13 (Wiles,Taylor–Wiles, Ribet,…). 𝜌 cannot be irreducible either.

Proof. This is the main content of Wiles’ magnum opus. We omit the argument for now,
although later on in this project we will have a lot to say about a proof of this.

Corollary 2.14. There is no Frey package.

Proof. Follows immediately from the previous two theorems 2.12 and 2.13.

We deduce

Corollary 2.15. Fermat’s Last Theorem is true.

Proof. Assume there is a there is a counterexample 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛. By Corollary 2.3 we may
assume that there is also a counterexample 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝 with 𝑝 ≥ 5 and prime. Then there
is a Frey package (𝑎, 𝑏, 𝑐, 𝑝) by 2.5, contradicting Corollary 2.14.

The structure of the rest of this (highly incomplete, for now) document is as follows. In
Chapter 3 we develop some of the basic theory of elliptic curves and the Galois representa-
tions attached to their 𝑝-torsion subgroups. We then apply this theory to the Frey curve,
deducing in particular how Mazur’s result on torsion subgroups of elliptic curves implies
Theorem 2.12, the assertion that 𝜌 cannot be reducible. In Chapter 4 we give a high-level
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overview of our strategy to prove that 𝜌 cannot be irreducible, which diverges from the orig-
inal approach taken by Wiles; one key difference is that we work with the 𝑝-torsion directly
rather than switching to the 3-torsion. We also give a precise statement of the modularity
lifting theorem which we will use. Finally, in Chapter 7 we give a collection of theorem
statements which we shall need in order to push our strategy through. All of these results
were known in the 1980s or before. This chapter is incoherent in the sense that it is just a
big list of apparently unrelated results. As our exposition of the proof expands, the results
of this chapter will slowly move to more appropriate places. The chapter is merely there to
give some kind of idea of the magnitude of the project.
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Chapter 3

Elliptic curves, and the Frey
Curve

3.1 Overview
In the last chapter we explained how, given a counterexample to Fermat’s Last Theorem, we
could construct a Frey package and thus a Frey curve, which is an elliptic curve with some
interesting properties. In this chapter we start with an overview of parts of the theory of the
arithmetic of elliptic curves. Following this we sketch proofs of the two main results of this
chapter: firstly that the 𝑝-torsion 𝜌 in the Frey curve is “hardly ramified”, and secondly that
Mazur’s result on the possible torsion of elliptic curves implies that 𝜌 must be irreducible.
Everything here follows from standard results about elliptic curves, however almost none of
these results are in mathlib as I am writing this, so there is plenty to be done here.

3.2 The arithmetic of elliptic curves
We give an overview of the results we need, citing the literature for proofs. Everything here
is standard, and most of it dates back to the 1970s or before.
Theorem 3.1. Let 𝑛 be a positive integer, let 𝐹 be a separably closed field with 𝑛 nonzero
in 𝐹 , and let 𝐸 be an elliptic curve over 𝐹 . Then the 𝑛-torsion 𝐸(𝐾)[𝑛] in the 𝐹 -points of
𝐸 is a finite group of size 𝑛2.
Proof. There are several proofs in the textbooks. The proof being worked on uses the theory
of division polynomials; the formalisation is ongoing work of David Angdinata, and it will
be part of his PhD thesis.

This theorem actually tells us the structure of the 𝑛-torsion, because of the following
purely group-theoretic result:
Lemma 3.2. Say 𝑛 is a positive integer, 𝑟 is a natural, and 𝐴 is an abelian group. Assume
that for all 𝑑 ∣ 𝑛, the 𝑑-torsion 𝐴[𝑑] of 𝐴 has size 𝑑𝑟. Then 𝐴[𝑛] ≅ (ℤ/𝑛ℤ)𝑟.
Proof. The result is obvious if 𝑛 = 1, so we may assume 𝑛 > 1. One proof would be to write
𝐴 as ∏𝑡

𝑖=1(ℤ/𝑎𝑖ℤ) with 𝑎𝑖 ∣ 𝑎𝑖+1 (this is possible by the structure theorem for finite abelian
groups), and then to apply our hypothesis firstly with 𝑑 = 𝑎1 to deduce 𝑡 = 𝑟 and then with
𝑑 = 𝑎𝑡 to deduce 𝑎1 = 𝑎𝑡.
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Corollary 3.3. Let 𝑛 be a positive integer, let 𝐹 be a separably closed field with 𝑛 nonzero
in 𝐹 , and let 𝐸 be an elliptic curve over 𝐹 . Then the 𝑛-torsion 𝐸(𝐹)[𝑛] in the 𝐹 -points of
𝐸 is a finite group isomorphic to (ℤ/𝑛ℤ)2.

Proof. This follows from the previous group-theoretic lemma 3.2 and theorem 3.1.

We saw in section 2.4 that if 𝐸 is an elliptic curve over a field 𝑘 and if 𝑘sep is a separable
closure of 𝑘, then the group Gal(𝑘sep/𝑘) acts on 𝐸(𝑘sep)[𝑛]. Now let 𝑛 be a positive integer
which is nonzero in 𝑘. We have just seen that 𝐸(𝑘sep)[𝑛] is isomorphic to (ℤ/𝑛ℤ)2, and
it inherits an action of Gal(𝑘sep/𝑘). If we fix an isomorphism 𝐸(𝑘sep)[𝑛] ≅ (ℤ/𝑛ℤ)2 then
we get a representation Gal(𝑘sep/𝑘) → GL2(ℤ/𝑛ℤ). A fundamental fact about this Galois
representation is that its determinant is the cyclotomic character.

Theorem 3.4. If 𝐸 is an elliptic curve over a field 𝑘, and 𝑛 is a positive integer which is
nonzero in 𝑘, then the determinant of the 2-dimensional representation of Gal(𝑘sep/𝑘) on
𝐸(𝑘sep)[𝑛] is the mod 𝑛 cyclotomic character.

Proof. This presumably should be done via the Weil pairing. I have not yet put any thought
into a feasible way to formalise this.

3.3 Good reduction
We give a brief overview of the theory of good and multiplicative reduction of elliptic curves.
For more details one can consult the standard sources such as [14]. We stick with the low-
level approach, thinking of elliptic curves as plane cubics; whilst we cannot do this forever,
it will suffice for these initial results.

Definition 3.5. Let 𝐸 be an elliptic curve over the field of fractions 𝐾 of a valuation ring
𝑅 with maximal ideal 𝔪. We say 𝐸 has good reduction over 𝑅 if 𝐸 has a model with
coefficients in 𝑅 and the reduction mod 𝔪 is still non-singular. If 𝐸 is an elliptic curve over
a number field 𝑁 and 𝑃 is a maximal ideal of its integer ring 𝒪𝑁 , then one says that 𝐸 has
good reduction at 𝑃 if 𝐸 has good reduction over the 𝒪𝑁,𝑃 , the localisation of 𝒪𝑁 at 𝑃 .

Remark 3.6. From this point on, our Frey curves and Frey packages will use notation
(𝑎, 𝑏, 𝑐, ℓ), with ℓ ≥ 5 a prime number, rather than 𝑝. This frees up 𝑝 for use as another
prime.

Lemma 3.7. If 𝐸 is the Frey curve 𝑌 2 = 𝑋(𝑋 − 𝑎ℓ)(𝑋 + 𝑏ℓ) associated to a Frey package
(𝑎, 𝑏, 𝑐, ℓ), and if 𝑝 is a prime not dividing 𝑎𝑏𝑐 (and in particular if 𝑝 > 2), then 𝐸 has good
reduction at 𝑝.

Proof. The reduction mod 𝑝 of the equation defining the Frey curve is still a smooth plane
cubic, because the three roots 0, 𝑎ℓ and −𝑏ℓ are distinct modulo 𝑝 (note that the difference
between 𝑎ℓ and −𝑏ℓ is 𝑐ℓ).

If 𝐸 is an elliptic curve over a number field 𝑁 and if 𝜌 is the representation of Gal(𝑁/𝑁)
on the 𝑛-torsion of 𝐸 then 𝜌 is continuous and its image is finite, so by the fundamental theo-
rem of (infinite) Galois theory the representation factors through an injection Gal(𝐿/𝑁) →
GL2(ℤ/𝑛ℤ) where 𝐿/𝑁 is a finite Galois extension of number fields. One says that 𝜌 is
unramified at a maximal ideal 𝑃 of 𝒪𝑁 if the extension 𝐿/𝑁 is unramified at 𝑃 (or in other
words, if the factorization of 𝑃𝒪𝐿 into prime ideals is squarefree).

At some point we will need a theory of finite flat group schemes over an affine base. Here
is a working definition.

8



Definition 3.8. If 𝑅 is a commutative ring, then a finite flat group scheme over 𝑅 is the
spectrum of a commutative Hopf algebra 𝐻/𝑅 which is finite and flat as an 𝑅-module.

(Probably this is not the correct definition in the non-Noetherian case; one should instead
ask for locally free, which is equivalent in the Noetherian case and enables you to reduce to
the Noetherian case in general)

Some facts we will need are:

Theorem 3.9. If 𝐸 is an elliptic curve over a number field 𝑁 and 𝐸 has good reduction at
a maximal ideal 𝑃 of 𝒪𝑁 , and if furthermore 𝑛 ∉ 𝑃 , then the Galois representation on the
𝑛-torsion of 𝐸 is unramified.

Proof. One approach would be by showing that the 𝑛-torsion in the integral model of 𝐸
over 𝒪𝑁,𝑃 is an etale finite flat group scheme. There might be simpler approaches however.
It’s worth looking to see what Silverman does.

Theorem 3.10. If 𝐸 is an elliptic curve over a number field 𝑁 and 𝐸 has good reduction
at a maximal ideal 𝑃 of 𝒪𝑁 containing the prime number 𝑝, then the Galois representation
on the 𝑝-torsion of 𝐸 comes from a finite flat group scheme over the localisation 𝒪𝑁,𝑃 .

Proof. Indeed, the kernel of the 𝑝-torsion on a good integral model is finite and flat. Checking
this claim formally will probably involve a fair amount of work.

3.4 Multiplicative reduction
Definition 3.11. Let 𝐸 be an elliptic curve over the field of fractions 𝐾 of a valuation ring
𝑅 with maximal ideal 𝔪. We say 𝐸 has multiplicative reduction over 𝑅 if 𝐸 has a model
with coefficients in 𝑅 and which reduces mod 𝑅/𝔪 to a plane cubic with one singularity,
which is an ordinary double point. We say that the reduction is split if the two tangent lines
at the ordinary double point are both defined over 𝑅/𝔪, and non-split otherwise.

If 𝐸 is an elliptic curve over a number field 𝑁 and 𝑃 is a maximal ideal of its integer ring
𝒪𝑁 , then one says that 𝐸 has multiplicative reduction at 𝑃 if 𝐸 has multiplicative reduction
over the 𝒪𝑁,𝑃 , the localisation of 𝒪𝑁 at 𝑃 .

Lemma 3.12. If 𝐸 is the Frey curve 𝑌 2 = 𝑋(𝑋 − 𝑎ℓ)(𝑋 + 𝑏ℓ) associated to a Frey package
(𝑎, 𝑏, 𝑐, ℓ), and if 𝑝 is an odd prime which divides 𝑎𝑏𝑐, then 𝐸 has multiplicative reduction
at 𝑝.

Proof. The hypothesis 𝑝 ∣ 𝑎𝑏𝑐 implies that precisely two of the three roots 0, 𝑎ℓ and −𝑏ℓ of
the cubic are equal mod 𝑝. Call 𝑥 ∈ ℤ/𝑝ℤ this common value. Then the reduction mod 𝑝 of
the curve is smooth away from the point (𝑥, 0), and has an ordinary double point at (𝑥, 0).
Hence the Frey curve has multiplicative reduction at 𝑝.

Remark 3.13. If the third root reduces mod 𝑝 to 𝑦 ≠ 𝑥, then the reduction is split multi-
plicative iff 𝑥 − 𝑦 is a square mod 𝑝. We shall not need this fact.

Lemma 3.14. If 𝐸 is the Frey curve 𝑌 2 = 𝑋(𝑋 − 𝑎ℓ)(𝑋 + 𝑏ℓ) associated to a Frey package
(𝑎, 𝑏, 𝑐, ℓ) then 𝐸 has multiplicative reduction at 2.
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Proof. Indeed, the change of variables 𝑋 = 4𝑋′ and 𝑌 = 8𝑌 ′ +4𝑋′ transforms the equation
to 64𝑌 ′2 +64𝑋′𝑌 ′ = 64𝑋′3 +16𝑋′2(𝑏ℓ −𝑎ℓ −1)−4𝑋′𝑎ℓ𝑏ℓ and, because ℓ ≥ 5, 𝑏 is even and
𝑎 = 3 mod 4, we see that the 64s cancel, giving an equation over ℤ which reduces mod 2 to
𝑌 ′2 + 𝑋′𝑌 ′ = 𝑋′3 + 𝑐𝑋′2 for some 𝑐 ∈ {0, 1}. This cubic is smooth away from an ordinary
double point at (0, 0). Hence the Frey curve has multiplicative reduction at 2.

Remark 3.15. Note that 𝐸 has split multiplicative reduction iff 𝑐 = 0, which happens iff
𝑎ℓ = 7 mod 8. We shall not need this fact.

In particular, the Frey curve associated to a Frey package is semistable – it has good or
multiplicative reduction at all primes.

The main thing we need about elliptic curves with multiplicative reduction over nonar-
chimedean local fields is the uniformisation theorem, originally due to Tate.

Theorem 3.16. If 𝐸 is an elliptic curve over a field complete with respect to a nontrivial
nonarchimedean (real-valued) norm 𝐾 and if 𝐸 has split multiplicative reduction, then there
is a Galois-equivariant injection (𝐾sep)×/𝑞ℤ → 𝐸(𝐾sep), where 𝑞 ∈ 𝐾× satisfies |𝑞| =
|𝑗(𝐸)|−1.

Proof. See [13], Theorems V.3.1, Remark V.3.1.2 (we don’t need surjectivity), and Theorem
V.5.3. This is a lot of work and is a good target for breaking down into many smaller
lemmas.

Corollary 3.17. If 𝐸 is an elliptic curve over a field 𝐾 complete with respect to a nontrivial
nonarchimedean (real-valued) norm and with perfect residue field, and if 𝐸 has multiplicative
reduction, then there’s an unramified character 𝜒 of Gal(𝐾sep/𝐾) whose square is 1, such
that for all positive integers 𝑛 with 𝑛 ≠ 0 in 𝐾, the 𝑛-torsion 𝐸(𝐾sep)[𝑛] is an extension
of 𝜒 by 𝜖𝜒, where 𝜖 is the cyclotomic character. Furthermore, the element of 𝐾×/(𝐾×)ℓ

corresponding to this extension is given by the 𝑞-invariant of the curve.

Proof. After a quadratic twist we may assume that 𝐸 has split multiplicative reduction.
The result then follows from the uniformisation theorem and an explicit computation. Note
that even if we do not prove surjectivity of Tate’s uniformisation, we still know that it’s
surjective on the 𝑛-torsion, because we know that there are 𝑛2 points in the 𝑛-torsion of 𝐸
over 𝐾sep, and they are all accounted for by the 𝑛-torsion in (𝐾sep)×/𝑞ℤ.

3.5 Hardly ramified representations
We make the following definition; this is not in the literature but it is a useful concept for
us.

Definition 3.18. Let ℓ ≥ 5 be a prime and let 𝑉 be a 2-dimensional vector space over
ℤ/ℓℤ. A representation 𝜌 ∶ Gal(ℚ/ℚ) → GL(𝑉 ) is said to be hardly ramified if it satisfies
the following four axioms:

1. det(𝜌) is the mod ℓ cyclotomic character;

2. 𝜌 is unramified outside 2ℓ;

3. The semisimplification of the restriction of 𝜌 to Gal(ℚ2/ℚ2) is unramified;

4. The restriction of 𝜌 to Gal(ℚℓ/ℚℓ) comes from a finite flat group scheme.
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We are interested in hardly ramified representations for several reasons. One is that by
using some deep theorems, we will be able to prove that all hardly ramified representations
are potentially automorphic, which will give us our first foothold into the world of modular
forms. We shall come back to these ideas later. In the next section we shall be concerned with
the following rather simpler result, namely that the ℓ-torsion in the Frey curve associated
to a Frey package (𝑎, 𝑏, 𝑐, ℓ) is hardly ramified. The proof is standard; for another reference,
see Theorem 2.15 of [5].

3.6 The ℓ-torsion in the Frey curve is hardly ramified.
Let (𝑎, 𝑏, 𝑐, ℓ) be a Frey package, with associated Frey curve 𝐸 and mod ℓ Galois represen-
tation 𝜌 = 𝐸[ℓ]. We now work through a proof that 𝜌 is hardly ramified.

Theorem 3.19. If 𝑝 ≠ ℓ is a prime not dividing 𝑎𝑏𝑐 then 𝜌 is unramified at 𝑝.

Proof. Indeed, 𝐸 has good reduction at 𝑝, and hence 𝜌 is unramified at 𝑝 by 3.9.

If however 𝑝 divides 𝑎𝑏𝑐 then 𝐸 has multiplicative reduction at 𝑝, and we can use the
theory of the Tate curve to analyse 𝜌 at 𝑝.

Theorem 3.20. If (𝑎, 𝑏, 𝑐, ℓ) is a Frey package then the 𝑗-invariant of the corresponding
Frey curve is 28(𝐶2 − 𝐴𝐵)3/𝐴2𝐵2𝐶2, where 𝐴 = 𝑎ℓ, 𝐵 = 𝑏ℓ and 𝐶 = 𝑐ℓ.

Proof. Apply the explicit formula (presumably already in mathlib)

Corollary 3.21. If (𝑎, 𝑏, 𝑐, ℓ) is a Frey package and the 𝑗-invariant of the corresponding
Frey curve is 𝑗, and if 2 < 𝑝 ∣ 𝑎𝑏𝑐, then the 𝑝-adic valuation 𝑣𝑝(𝑗) of 𝑗 is a multiple of ℓ.

Proof. Indeed 𝑝 does not divide 28 as 𝑝 > 2, and (using the notation of the previous theorem)
𝑝 does not divide 𝐶2 − 𝐴𝐵 either, because it divides precisely one of 𝐴, 𝐵 and 𝐶. Hence
𝑣𝑝(𝑗) = −2𝑣𝑝(𝑎ℓ𝑏ℓ𝑐ℓ) = −2ℓ𝑣𝑝(𝑎𝑏𝑐) is a multiple of ℓ.

Corollary 3.22. If (𝑎, 𝑏, 𝑐, ℓ) is a Frey package, if 2 < 𝑝 ∣ 𝑎𝑏𝑐 is a prime with 𝑝 ≠ ℓ, then
the ℓ-torsion in the Frey curve is unramified at 𝑝.

Proof. After an unramified quadratic twist we may assume the curve is split at 𝑝. The
theory of the Tate curve tells us that the extension of ℚ𝑝 cut out by the ℓ-torsion of the Frey
curve is ℚ𝑝(𝜇ℓ, ℓ√𝑞), with 𝜇ℓ the set of ℓth roots of unity in ℚ𝑝. Because ℓ ≠ 𝑝 the extension
ℚ𝑝(𝜇ℓ) is unramified at 𝑝. And because 𝑝 ≠ 2 divides 𝑎𝑏𝑐, theorem 3.21 shows us that the
𝑗-invariant of the Frey curve has 𝑝-adic valuation a multiple of ℓ. Thus the extension can
be written ℚ𝑝(𝜇ℓ, ℓ√𝑢), where 𝑢 ∈ ℚ×

𝑝 is a unit. The extension is hence unramified (because,
for example, Hensel’s Lemma shows that the ℓth root of 𝑢 is in the maximal unramified
extension of ℚ𝑝).

Corollary 3.23. If (𝑎, 𝑏, 𝑐, ℓ) is a Frey package, then the ℓ-torsion in the Frey curve is
unramified at all primes 𝑝 ≠ 2, ℓ.

Proof. Follows from 3.19 and 3.22.

This analysis needs to be slightly modified if 𝑝 = 2, because the 𝑗-invariant of the Frey
curve may not have 2-adic valuation a multiple of ℓ. We obtain the following weaker result.
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Corollary 3.24. If (𝑎, 𝑏, 𝑐, ℓ) is a Frey package, then the semisimplification of the restriction
of the ℓ-torsion 𝜌 in the associated Frey curve to Gal(ℚ2/ℚ2) is unramified.

Proof. After a quadratic twist to make the curve have split multiplicative reduction, the
theory of the Tate curve shows us that 𝜌 is an extension of the trivial character by the
cyclotomic character. Hence the semisimplification of this representation is the direct sum
of two unramified characters and is hence unramified.

Theorem 3.25. Let 𝜌 be the ℓ-torsion in the Frey curve associated to a Frey package
(𝑎, 𝑏, 𝑐, ℓ). Then the restriction of 𝜌 to Gal(ℚℓ/ℚℓ) comes from a finite flat group scheme.

Proof. The Frey curve either has good reduction at ℓ (case 1 of FLT) or multiplicative
reduction at ℓ (case 2 of FLT). In the first case the ℓ-torsion is finite and flat at ℓ by
theorem 3.10. In the second case the theory of the Tate curve shows that the ℓ-torsion is
(up to quadratic twist) an extension of the trivial character by the cyclotomic character
corresponding (via Hilbert 90) to the ℓth power of an ℓ-adic unit. This extension is known
to be finite and flat; see for example Proposition 8.2 of [6]. Note that the proof in [6] uses
fppf cohomology, although one can write down a much more elementary proof of this using
arguments in [8].

We have now proved the first main result of this chapter.

Theorem 3.26. Let 𝜌 be the Galois representation on the ℓ-torsion of the Frey curve coming
from a Frey package (𝑎, 𝑏, 𝑐, ℓ). Then 𝜌 is hardly ramified.

Proof. This follows from the results above. The fact that ℓ ≥ 5 follows from the definition
of a Frey package. The first condition is theorem 3.4, and the second is theorem 3.23. The
third condition is theorem 3.24, and the fourth is theorem 3.25.

3.7 The ℓ-torsion in the Frey curve is irreducible.
We finish this chapter by showing that Mazur’s theorem implies that the ℓ-torsion in the
Frey curve is irreducible. We start by stating Mazur’s theorem.

Theorem 3.27. Let 𝐸 be an elliptic curve over ℚ. Then the torsion subgroup of 𝐸 has size
at most 16.

Proof. This is the main theorem of [9]. Formalising this result will be a highly non-trivial
project; note that this theorem is used in all known proofs of FLT, so there seems to be no
way around it.

Let (𝑎, 𝑏, 𝑐, ℓ) be a Frey package, with associated Frey curve 𝐸 and mod ℓ Galois repre-
sentation 𝜌 = 𝐸[ℓ]. We know that 𝜌 is 2-dimensional; let’s suppose for a contradiction that
that it is reducible, so in particular its semisimplification is the direct sum of two characters
𝛼 and 𝛽.

The next two results are Lemme 6 on p307 of [11].

Theorem 3.28. With notation as above, the characters 𝛼 and 𝛽 are unramified at 𝑝 for all
primes 𝑝 ≠ ℓ.

Proof. We have seen in theorem 3.23 that 𝜌 is unramified at all primes 𝑝 ≠ 2, ℓ, so the
characters 𝛼 and 𝛽 are unramified at all such primes. If 𝑝 = 2 then the semisimplification of
the restriction of 𝜌 to Gal(ℚ2/ℚ2) is unramified by corollary 3.24, so 𝛼 and 𝛽 are unramified
at 2.

12



Remark 3.29. Does this innocuous-looking proof above use some form of the Brauer-Nesbitt
theorem?

Theorem 3.30. One of 𝛼 and 𝛽 is unramified at ℓ.

Proof. In the multiplicative case this follows immediately from the theory of the Tate curve.
In the good reduction case, the ℓ-torsion is finite and flat at ℓ by theorem 3.25, so we now
need to understand what such representations look like. If the reduction is supersingular,
then 𝜌 is necessarily irreducible, contradicting our assumption. If however the reduction is
ordinary, then the theory of the canonical subgroup shows that the ℓ-torsion is an extension of
an unramified character by an unramified twist of the cyclotomic character (see Proposition
11 on p273 of [11]).

Corollary 3.31. One of 𝛼 and 𝛽 is trivial.

Proof. The previous two theorems show that one of 𝛼 and 𝛽 is a character unramified at
all primes, and hence cuts out an extension unramified at all primes, so by Minkowski’s
theorem this character is trivial.

To summarise, we have shown the following.

Theorem 3.32. If 𝜌 is reducible, then either 𝜌 has a trivial 1-dimensional submodule or
a trivial 1-dimensional quotient (here “trivial” means that the Galois group Gal(ℚ/ℚ) acts
trivially).

Proof. Follows from the above.

We now split into two cases, depending on whether 𝜌 has a trivial submodule or a trivial
quotient.

Lemma 3.33. If 𝜌 has a trivial 1-dimensional submodule then the Frey curve has a non-
trivial point of order ℓ.

Proof. Indeed, the trivial 1-dimensional submodule is a Galois-invariant subgroup of 𝐸[ℓ],
so it corresponds to a Galois-stable point of order ℓ.

Corollary 3.34. 𝜌 cannot have a trivial 1-dimensional submodule.

Proof. We have just seen that in this case, the Frey curve has a point of order ℓ. It also
has three points of order 2, meaning that its torsion subgroup has order at least 4ℓ ≥ 20,
contradicting Mazur’s theorem 3.27.

It remains to rule out the case where 𝜌 is reducible and has a trivial quotient. To do
this, we need to quotient out 𝜌 by its 1-dimensional Galois-stable submodule.

Theorem 3.35. If 𝑝 is a prime and if 𝐸 is an elliptic curve over a field 𝐾 of characteristic
not equal to 𝑝, and if 𝐶 ⊆ 𝐸(𝐾sep)[𝑝] is a Galois-stable subgroup of order 𝑝, then there’s
an elliptic curve 𝐸′ ∶=“𝐸/𝐶” over 𝐾 and an isogeny of elliptic curves 𝐸 → 𝐸′ over 𝐾
inducing a Galois-equivariant surjection 𝐸(𝐾sep) → 𝐸′(𝐾sep) with kernel precisely 𝐶.

Proof. Brian Conrad suggested the following approach, applicable as well for abelian schemes
𝐴 → 𝑆 over a base. Let 𝐺 be a finite locally free 𝑆-subgroup of 𝐴, say 𝐺 with constant rank
𝑛 > 0 by working locally on the base, so 𝐺 is contained in 𝐴[𝑛]. Then 𝑛 ∶ 𝐴 → 𝐴 is the fppf
quotient of the source by 𝐴[𝑛], so it expresses 𝐴 as an 𝐴[𝑛]-torsor over itself. The problem
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of building 𝐴/𝐺 as an abelian scheme is then seen to be the “same” as that of constructing
the quotient of this 𝐴[𝑛]-torsor by the G-action.

In other words, the problem them becomes one having nothing specific to do with abelian
schemes, at the cost of working over a base (such as the original target 𝐴) even when 𝑆
was the spectrum of a field in the application. The question is now: for a finite locally free
commutative 𝑆-group 𝐻 and a closed locally free 𝑆-subgroup 𝐺, build a reasonable quotient
𝐻/𝐺. One approach is to look at the Cartier dual 𝐻∨ → 𝐺∨, show that it’s faithfully flat,
and then deduce that the Cartier dual of the kernel of this map does the job. Note that one
input for this proof is the claim that inclusions of Hopf algebras over fields are flat, proved
nicely in Waterhouse’s book.

I suspect that the proof above is a no-go right now; there will presumably be a much
easier proof of this result in Silverman though. Note also that this approach will not give us
a plane cubic, but rather a smooth proper group scheme so we would need Riemann-Roch
to turn it into a plane cubic, although it’s unlikely that one will be able to prove Mazur’s
theorem without developing all of this machinery and much more.

Corollary 3.36. 𝜌 cannot have a trivial 1-dimensional quotient.

Proof. 𝜌 has a Galois-stable submodule 𝐶. The quotient curve 𝐸/𝐶 now has a trivial 1-
dimensional submodule, and also three points of order 2 (the images of the three 2-torsion
points in 𝐸). Hence the torsion subgroup of 𝐸/𝐶 has order at least 4ℓ ≥ 20, again contra-
dicting Mazur’s theorem.

Theorem 3.37. The ℓ-torsion in the Frey curve associated to a Frey package (𝑎, 𝑏, 𝑐, ℓ) is
irreducible.

Proof. Follows from theorem 3.32, corollary 3.34 and corollary 3.36.
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Chapter 4

An overview of the proof

So far we have seen that, modulo Mazur’s theorem (and various other things which will
still take some work to formalise but which are much easier), Fermat’s Last Theorem can
be reduced to the statement that there is no prime ℓ ≥ 5 and hardly-ramified irreducible
2-dimensional Galois representation 𝜌 ∶ Gal(ℚ/ℚ) → GL2(ℤ/ℓℤ).

In this chapter we give an overview of our strategy for proving this, and collect various
results which we will need along the way. Note that we no longer need to assume that 𝜌
comes from the ℓ-torsion in an elliptic curve.

4.1 Potential modularity.
We will only speak about modularity for 2-dimensional representations of the absolute Galois
group of a totally real field 𝐹 of even degree over ℚ, and in particular we will never say
that a representation of the absolute Galois group of ℚ is modular! What we will mean
by “modular” is “associated to an automorphic representation of the units of the totally
definite quaternion algebra over 𝐹 ramified at no finite places”. We can furthermore even
demand that the infinity type is trivial, as these are the only forms we shall need for FLT.

Assume we have a hardly-ramified representation 𝜌 as above. Let 𝐾 be the number field
corresponding to the kernel of 𝜌. Our first claim is that there is some totally real field 𝐹 of
even degree, Galois over ℚ, unramified at ℓ, and disjoint from 𝐾, such that 𝜌|𝐺𝐹 is modular.
The proof of this is very long, and uses a host of machinery. For example:

• Moret–Bailly’s result [10] on points on curves with prescribed local behaviour;

• several nontrivial results in global class field theory;

• the Jacquet–Langlands correspondence;

• The assertion that irreducible 2-dimensional mod 𝑝 representations induced from a
character are modular (this follows from converse theorems);

• A modularity lifting theorem.

Almost everything here dates back to the the 1980s or before. The exception is the
modularity lifting theorem, which we now state explicitly.
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4.2 A modularity lifting theorem
Suppose ℓ ≥ 5 is a prime, that 𝐹 is a totally real field of even degree in which ℓ is unramified,
and that 𝑆 is a finite set of finite places of 𝐹 not dividing ℓ. Write 𝐺𝐹 for the absolute
Galois group of 𝐹 .

If 𝑣 ∈ 𝑆 then let 𝐹𝑣 denote the completion of 𝐹 at 𝑣, fix an inclusion 𝐹 → 𝐹𝑣, let 𝒪𝑣
denote the integers of 𝐹𝑣 and 𝑘(𝑣) the residue field. Let 𝐼𝑣 ⊂ 𝐺𝐹 denote the inertia subgroup
at 𝑣. Local class field theory (or a more elementary approach) gives a map 𝐼𝑣 → 𝒪×

𝐹𝑣
and

hence a map 𝐼𝑣 → 𝑘(𝑣)×. Let 𝐽𝑣 denote the kernel of this map.
Let 𝑅 be a complete local Noetherian ℤℓ-algebra with finite residue field of characteristic

ℓ. We will be interested in representations 𝜌 ∶ 𝐺𝐹 → GL2(𝑅) with the following four
properties.

• det(𝜌) is the cyclotomic character;

• 𝜌 is unramified outside 𝑆 ∪ {ℓ};

• If 𝑣 ∈ 𝑆 then 𝜌(𝑔) has trace equal to 2 for all 𝑔 ∈ 𝐽𝑣;

• If 𝑣 ∣ ℓ is a place of 𝐹 then 𝜌 is flat at 𝑣.

In the last bullet point, “flat” means “projective limit of representations arising from
finite flat group schemes”. Let us use the lousy temporary notation “𝑆-good” to denote
representations with these four properties.

Say 𝑘 is a finite extension of ℤ/ℓℤ and 𝜌 ∶ 𝐺𝐹 → GL2(𝑘) is continuous, absolutely irre-
ducible when restricted to 𝐹(𝜁ℓ), and 𝑆-good. One can check that the functor representing
𝑆-good lifts of 𝜌 is representable.

Theorem 4.1. If 𝜌 is modular of level Γ1(𝑆) and 𝜌 ∶ 𝐺𝐹 → GL2(𝒪) is an 𝑆-good lift of 𝜌
to 𝒪, the integers of a finite extension of ℚℓ, then 𝜌 is also modular of level Γ1(𝑆).

Right now we are very far from even stating this theorem in Lean.
I am not entirely sure where to find a proof of this in the literature, although it has

certainly been known to the experts for some time. Theorem 3.3 of [15] comes close, although
it assumes that ℓ is totally split in 𝐹 rather than just unramified. Another near-reference is
Theorem 5.2 of [7], although this assumes the slightly stronger assumption that the image
of 𝜌 contains SL2(ℤ/𝑝ℤ) (however it is well-known to the experts that this can be weakened
to give the result we need). One reference for the proof is Richard Taylor’s 2018 Stanford
course.

Proof. (Sketch)
The proof is a two-stage procedure and has a nontrivial analytic input. First one uses

the Skinner–Wiles trick to reduce to the “minimal case”, and this needs cyclic base change
for GL(2) and also a characterisation of the image of the base change construction; this
seems to need a multiplicity one result, which (because of our definition of “modular”) will
need Jacquet–Langlands as well.

In the minimal case, the argument is the usual Taylor–Wiles trick, using refinements due
to Kisin and others.

Given this modularity lifting theorem, the strategy to show potential modularity of 𝜌 is
to use Moret–Bailly to find an appropriate totally real field 𝐹 , an auxiliary prime 𝑝, and
an auxiliary elliptic curve over 𝐹 whose mod ℓ Galois representation is 𝜌 and whose mod 𝑝

16

https://math.berkeley.edu/~fengt/249A_2018.pdf
https://math.berkeley.edu/~fengt/249A_2018.pdf


Galois representation is induced from a character. By converse theorems (for example) the
mod 𝑝 Galois representation is associated to an automorphic representation of GL2 /𝐹 and
hence by Jacquet–Langlands it is modular. Now we use the modularity lifting theorem to
deduce the modularity of the curve over 𝐹 and hence the modularity of the ℓ-torsion.

4.3 Compatible families, and reduction at 3
We now use Khare–Wintenberger to lift 𝜌 to a potentially modular ℓ-adic Galois represen-
tation of conductor 2, and put it into an ℓ-adic family using the Brauer’s theorem trick in
[1]. Finally we look at the 3-adic specialisation of this family. Reducing mod 3 we get a rep-
resentation which is flat at 3 and tame at 2, so must be reducible because of the techniques
introduced in Fontaine’s paper on abelian varieties over ℤ (an irreducible representation
would cut out a number field whose discriminant violates the Odlyzko bounds). One can
now go on to deduce that the 3-adic representation must be reducible, which contradicts
the irreducibility of 𝜌.

We apologise for the sketchiness of what is here, however at the time of writing it is so
far from what we are even able to state in Lean that there seems to be little point right
now in fleshing out the argument further. As this document grows, we will add a far more
detailed discussion of what is going on here. Note in particular that stating the modularity
lifting theorem in Lean is the first target.
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Chapter 5

An example of an automorphic
form

5.1 Introduction
The key ingredient in Wiles’ proof of Fermat’s Last Theorem is a modularity lifting theorem,
sometimes called an 𝑅 = 𝑇 theorem. For Wiles, the 𝑅 came from elliptic curves, the 𝑇
came from classical modular forms, and the fact that they’re equal is basically the Shimura–
Taniyama–Weil conjecture, now known as the Breuil–Conrad–Diamond–Taylor modularity
theorem: any elliptic curve over the rationals is modular.

At the heart of the proof we shall formalise is also an 𝑅 = 𝑇 theorem, however the
𝑇 which we shall use will be associated not to classical modular forms, but to spaces of
more general automorphic forms called quaternionic modular forms. Those of you who
know something about classical modular forms might well know that the groups SL2(ℝ) and
SL2(ℤ) are intimately involved; these are the norm 1 units in the matrix rings 𝑀2(ℝ) and
𝑀2(ℤ). In the theory of quaternionic modular forms, the analogous groups are the norm
1 units in rings such as Hamilton’s quaternions ℝ ⊕ ℝ𝑖 ⊕ ℝ𝑗 ⊕ ℝ𝑘, and subrings such as
ℤ ⊕ ℤ𝑖 ⊕ ℤ𝑗 ⊕ ℤ𝑘.

One of the main goals of the FLT project at the time of writing this sentence, is formal-
ising the statement of the modularity lifting theorem which we shall use. So we are going
to need to develop the theory of quaternionic modular forms, which is rather different to
the theory of classical modular forms (for example, in the cases we need, the definition is
completely algebraic; there are no holomorphic functions in sight, and the analogue of the
upper half plane in the quaternionic theory is a finite set of points).

We could just launch into the general theory over totally real fields, which will be the
generality which we’ll need. But when I was a PhD student, I learnt about these objects by
playing with explicit examples. So, whilst not logically necessary for the proof, I thought
it would be fun, and perhaps also instructional, to compute a concrete example of a space
of quaternionic modular forms. The process of constructing the example might even inform
what kind of machinery we should be developing in general. Let’s begin by discussing the
quaternion algebra we shall use.
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5.2 A quaternion algebra
Let’s define 𝐷 to be the quaternion algebra ℚ ⊕ ℚ𝑖 ⊕ ℚ𝑗 ⊕ ℚ𝑘. As a vector space, 𝐷 is 4-
dimensional over ℚ with [1, 𝑖, 𝑗, 𝑘] giving a basis. It has a (non-commutative)ring structure,
with multiplication satisfying the usual quaternion algebra relations 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 =
−1. You can think of 𝐷 as an analogue of 2 × 2 matrices with rational coefficients, hence
its units 𝐷× are an analogue of the group GL2(ℚ).

We will also need an analogue of the group GL2(ℤ), which will come from an integral
structure on 𝐷. We choose the Hurwitz order, namely the subring 𝒪 ∶= ℤ ⊕ ℤ𝑖 ⊕ ℤ𝑗 ⊕ ℤ𝜔,
where 𝜔 = −1+(𝑖+𝑗+𝑘)

2 , a cube root of unity, as (𝑖 + 𝑗 + 𝑘)2 = −3. The simplest way to
understand 𝒪 is that it’s quaternions 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 where either 𝑎, 𝑏, 𝑐, 𝑑 are all integers
or are all in 1

2 + ℤ.
Note that 𝒪 is a maximal order and a Euclidean domain, which is why we prefer it over

the more obvious sublattice ℤ ⊕ ℤ𝑖 ⊕ ℤ𝑗 ⊕ ℤ𝑘.
In this chapter, we are going to compute a complex vector space which could be called

something like the “weight 2 level 2 modular forms for 𝐷×”. The main result will be that
this space is 1-dimensional.

Note that mathlib has modular forms, but it doesn’t have enough complex analysis to
deduce that the space of modular forms of a given weight and level is finite-dimensional.
If all the ‘sorry‘s in this chapter are completed before mathlib gets the necessary complex
analysis, then the first nonzero space of modular forms to be proved finite-dimensional in
Lean will be a space of quaternionic modular forms.

We will use a modern ”adelic” definition of our modular forms, so the first thing we need
to do is to talk about profinite completions.

5.3 ℤ̂
Classically automorphic forms were defined as functions on symmetric spaces (like the upper
half plane) which transformed well under the action of certain discrete groups (for example
SL2(ℤ)). However such definitions became combinatorially problematic when generalised to
number fields with nontrivial class group, because the classical theory needed a number 𝑝
to define the Hecke operator 𝑇𝑝, and in the case where 𝑝 was a non-principal prime ideal
in a number field, there was no appropriate number. One fix is to take disjoint unions
of symmetric spaces indexed by the ideal class group of the field in question, but it is
easier to work adelically, which is morally what we shall do. However we are able to avoid
introducing the adeles explicitly; we can work instead with the conceptually simpler object
ℤ̂, the profinite completion of ℤ. So what is ℤ̂? We offer a low-level definition of this object.

Given an integer 𝑧, we can reduce it mod 𝑁 for every positive natural number and get
elements 𝑧𝑁 = 𝑧 ∈ ℤ/𝑁ℤ. These elements are not completely arbitrary though – they must
satisfy some compatibility conditions. For example there can be no positive integer 𝑧 such
that 𝑧10 = 6 and 𝑧2 = 1, because 𝑧10 = 6 tells us that 𝑧 ends in a 6 when written in base
10, and in particular it’s even, so 𝑧2 must be 0. The general rule: if 𝐷 ∣ 𝑁 then 𝑧𝐷 must be
equal to image of 𝑧𝑁 under the natural ring homomorphism from ℤ/𝑁ℤ to ℤ/𝐷ℤ. We say
that a collection of elements 𝑧𝑁 ∈ ℤ/𝑁ℤ is compatible if it satisfies this rule.

Definition 5.1. The profinite completion ℤ̂ of ℤ is the set of all compatible collections
𝑐 = (𝑐𝑁)𝑁 of elements of ℤ/𝑁ℤ indexed by ℕ+ ∶= {1, 2, 3, …}. A collection is said to be
compatible if for all positive integers 𝐷 ∣ 𝑁 , we have 𝑐𝑁 mod 𝐷 equals 𝑐𝐷.
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Lemma 5.2. ℤ̂ is a subring of ∏𝑁≥1(𝑍/𝑁ℤ) and in particular is a ring.

Proof. Follow your nose.

Examples of elements of ℤ̂ are are given by integers, where we define 𝑧𝑁 to be 𝑧 mod 𝑁
for all 𝑁 . This gives us a natural map from ℤ to ℤ̂. In particular we can talk about 0 ∈ ℤ̂
and 1 ∈ ℤ̂.

Lemma 5.3. 0 ≠ 1 in ℤ̂.

Proof. Recall that you can evaluate an element of ℤ̂ at a positive integer. Evaluating 0 at 2
gives 0, and evaluating 1 at 2 gives 1, and these are distinct elements of ℤ/2ℤ, so 0 ≠ 1 in
ℤ̂.

Lemma 5.4. The map from the naturals into ℤ̂ sending 𝑛 to 𝑛 is injective.

Proof. Generalise the above idea. Feel free to write up a LaTeX proof and PR it.

Note that it follows easily that that the map from the integers to ℤ̂ is injective.
But ℤ̂ is much larger than ℤ; it has the same cardinality as the reals in fact. Let’s write

down an explicit example of an element of ℤ̂ which isn’t obviously in ℤ.

Definition 5.5. The infinite sum 0! + 1! + 2! + 3! + 4! + 5! + ⋯ looks like it makes no sense
at all; it is the sum of an infinite series of larger and larger positive numbers. However, the
sum is finite modulo 𝑁 for every positive integer 𝑁 , because all the terms from 𝑁! onwards
are multiples of 𝑁 and thus are zero in ℤ/𝑁ℤ. Thus it makes sense to define 𝑒𝑁 to be the
value of the finite sum modulo 𝑁 . Explicitly, 𝑒𝑁 = 0! + 1! + ⋯ + (𝑁 − 1)! modulo 𝑁 .

Lemma 5.6. The collection (𝑒𝑁)𝑁 is an element of ℤ̂.

Proof. This boils down to checking that 𝐷! + (𝐷 + 1)! + ⋯ + (𝑁 − 1)! is a multiple of 𝐷.

Lemma 5.7. The element (𝑒𝑁)𝑁 of ℤ̂ is not in ℤ.

Proof. First imagine that 𝑒 = 𝑛 with 𝑛 ∈ ℤ and 0 ≤ 𝑛. In this case, choose 𝑗 such that
0!+1!+2!+⋯+𝑗! > 𝑛 and check also that the sum is less than (𝑗+1)!. Now set 𝑁 = (𝑗+1)!
and let’s compare 𝑒𝑁 and 𝑛𝑁 = 𝑛. The trick is that 𝑒𝑁 must be 0! + 1! + ⋯ + 𝑗! mod 𝑁 ,
because all the terms beyond this are multiples not just of (𝑗 + 1) but of (𝑗 + 1)! = 𝑁 . Thus
mod 𝑁 we have 0 ≤ 𝑛 < 𝑒𝑁 < 𝑁 so 𝑛 ≠ 𝑒.

Now we deal with 𝑛 = −𝑡 < 0; choose 𝑗 large such that (𝑗 + 1)! − (0! + 1! + ⋯ + 𝑗!) > 𝑡
(possible because the sum is at most 2 × 𝑗!) and then set 𝑁 = (𝑗 + 1)! and we have 0 <
𝑒𝑁 < 𝑁 − 𝑡 < 𝑁 so we cannot have 𝑒𝑁 = −𝑡 in ℤ/𝑁ℤ, so again 𝑒 ≠ 𝑛.

Let’s prove some more basic facts about ℤ̂.

Lemma 5.8. If 0 < 𝑁 is an integer then multiplication by 𝑁 is injective on ℤ̂.

Proof. Suppose that (𝑧𝑖)𝑖 ∈ ℤ̂ and 𝑁𝑧 = 0. This means that 𝑁𝑧𝑖 = 0 ∈ ℤ/𝑖ℤ for all 𝑖. Let
us fix an arbitrary positive integer 𝑗; we need to prove that 𝑧𝑗 = 0 ∈ ℤ/𝑗ℤ. Consider the
element 𝑧𝑁𝑗 ∈ ℤ/𝑁𝑗ℤ. By assumption, we have 𝑁𝑧𝑁𝑗 = 0, meaning that if we lift 𝑧𝑁𝑗 to
an integer, we have 𝑁𝑗 ∣ 𝑁𝑧𝑁𝑗, and thus 𝑗 ∣ 𝑧𝑁𝑗. Thus by the compatibility assumption on
the 𝑧𝑖 we have that 𝑧𝑗 ∈ ℤ/𝑗ℤ is the mod 𝑗 reduction of 𝑧𝑁𝑗 and hence is zero.

We will also need to understand exactly which elements of ℤ̂ are multiples of 𝑁 .
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Lemma 5.9. The multiples of 𝑁 in ℤ̂ are precisely the compatible collections (𝑧𝑖)𝑖 ∈ ℤ̂ with
𝑧𝑁 = 0.

Proof. Clearly 𝑧𝑁 = 0 is a necessary condition to be a multiple of 𝑁 . To see it is sufficient,
take a general (𝑧𝑖) ∈ ℤ̂ such that 𝑧𝑁 = 0, and now define a new element (𝑦𝑗)𝑗 of ℤ̂ by
𝑦𝑗 = 𝑧𝑁𝑗/𝑁 . Just to clarify what this means: 𝑧𝑁𝑗 ∈ ℤ/𝑁𝑗ℤ reduces mod 𝑁 to 𝑧𝑁 = 0
by the compatibility assumption, so it is in the subgroup 𝑁ℤ/𝑁𝑗ℤ of ℤ/𝑁𝑗ℤ, which is
isomorphic (via ”division by 𝑁”) to the group ℤ/𝑗ℤ; this is how we construct 𝑦𝑗. It is easily
checked that the 𝑦𝑗 are compatible and that 𝑁𝑦 = 𝑧.

5.4 More advanced remarks on ℤ̂ versus ℚ
This section can be skipped on first reading.

People who have seen some more advanced algebra might recognise this construction of
ℤ̂ as being the profinite completion of the additive abelian group ℤ, so it is a fundamental
object of mathematics in some sense. But usually, when building mathematics, after ℤ we
go to ℚ, a multiplicative localisation of ℤ, and only complete after that (to get ℝ). The
process of “completing before localising” gives us a far more arithmetic completion of ℤ.

Even though ℚ is a divisible abelian group and hence its profinite completion vanishes,
we can still attempt to ”locally profinitely complete it” by defining ℚ̂ ∶= ℚ ⊗ℤ ℤ̂. This
object is more commonly known as the finite adeles of ℚ. More generally if 𝐹 is any number
field then 𝐹 ⊗ℤ ℤ̂ is the ring of finite adeles of 𝐹 . To get to the full ring of adeles of a
number field 𝐹 you need to take the product with the ring of infinite adeles of 𝐹 , which
is 𝐹 ⊗ℚ ℝ: some kind of universal archimedean completion of 𝐹 . I don’t know a reference
which develops the theory of adeles in this way, so this is what we shall do here.

5.5 ℚ̂ and tensor products.
The definition of ℚ̂ is easy if you know about tensor products of additive abelian groups.

Definition 5.10. The profinite completion ℚ̂ of ℚ is the tensor product ℚ⊗ℤ ℤ̂, or ℚ̂ = ℚ⊗ℤ̂
for short.

5.6 A crash course in tensor products
We’ve defined ℚ̂ to be ℚ ⊗ ℤ̂. Whatever does this mean? Well just to orient yourself, if 𝐴
and 𝐵 are additive abelian groups, then 𝐴 ⊗ 𝐵 is also an abelian group. And if 𝐴 and 𝐵
are commutative rings (as they are in our case), then 𝐴 ⊗ 𝐵 is also a commutative ring.

Even if 𝐴 and 𝐵 are completely concrete commutative rings, their tensor product 𝐴 ⊗ 𝐵
might be incomprehensible. For example ℂ ⊗ ℂ is completely incomprehensible (note that
we are tensoring over the integers). It is not like the product of groups or the disjoint union
of two sets, where you have a completely explicit unambiguous formula for each element.

In this sense, the theory of tensor products is a bit like the theory of continuous functions.
Humanity started off studying concrete polynomial equations such as 𝑥2 +1 and then moved
on to concrete analytic functions such as log(𝑥) and sin(𝑥), but eventually the abstract
concept of a continuous function from the reals to the reals was born. There is no “formula”
for a general continuous function, and continuous functions such as 𝑒−1/𝑥2 or |𝑥| have no
power series. Even if there were a formula for a specific continuous function of interest, it
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is not clear in general how to make sense of the claim that it’s the “best” formula. In other
words, there is no ”canonical form” for a general continuous function, and yet we prove
things about them anyway. We shall adopt the same attitude for elements of 𝐴 ⊗ 𝐵.

The first thing to know about the tensor product 𝐴 ⊗ 𝐵 of two abelian groups 𝐴 and 𝐵
is a “constructor” for the type. In other words, how can we make elements 𝐴 ⊗ 𝐵? Well, it
turns out that given elements 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, we can form the element 𝑎 ⊗𝑡 𝑏 ∈ 𝐴 ⊗ 𝐵.

Example 5.11. Recall that the sum of all the factorials is an element 𝑒 ∈ ℤ̂, and 22/7 is
certainly a rational number, so we can make the element 22

7 ⊗𝑡 𝑒 ∈ ℚ̂.
This example is in the Lean code.
Elements of the form 𝑎 ⊗𝑡 𝑏 ∈ 𝐴 ⊗ 𝐵 are known as pure tensors. In the literature, pure

tensors are often written 𝑎 ⊗ 𝑏, but we shall follow mathlib’s convention in reserving the
⊗ symbol for groups like 𝐴 ⊗ 𝐵, and adorning it with a 𝑡 when using it on elements of the
groups (or, as Lean calls them, terms, which explains the notation).

Addition of pure tensors obeys the “distributivity” rules 𝑎 ⊗𝑡 𝑏1 + 𝑎 ⊗𝑡 𝑏2 = 𝑎 ⊗𝑡 (𝑏1 + 𝑏2)
and 𝑎1 ⊗𝑡 𝑏 + 𝑎2 ⊗𝑡 𝑏 = (𝑎1 + 𝑎2) ⊗𝑡 𝑏, but there is no rule which simplifies a general sum
𝑎 ⊗𝑡 𝑏 + 𝑐 ⊗𝑡 𝑑 into a pure tensor. Indeed, in general it is not the case that every element
of a tensor product 𝐴 ⊗ 𝐵 is of the form 𝑎 ⊗𝑡 𝑏; there can be tensors which aren’t pure.
However every element of 𝐴 ⊗ 𝐵 is a finite sum of pure tensors, with the result that one can
attempt to define additive maps from 𝐴 ⊗ 𝐵 by saying what they do on pure tensors, and
then extending linearly.

Another thing worth understanding is that just like how rational numbers can be written
as quotients of integers in several ways (for example 1/2 = 2/4 = 3/6 = ⋯), a general pure
tensor in 𝐴 ⊗ 𝐵 can be represented as 𝑎 ⊗𝑡 𝑏 in many ways. For example, in ℚ̂ we have
1 ⊗𝑡 2 = 2 ⊗𝑡 1. A general rule for equality of pure tensors is that if 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 and
𝑧 ∈ ℤ, then 𝑧𝑎 ⊗𝑡 𝑏 = 𝑎 ⊗𝑡 𝑧𝑏; integers can move over the tensor symbol. But equality is
hard: in general there may not be an algorithm to decide whether two pure tensors 𝑎 ⊗𝑡 𝑏
and 𝑐 ⊗𝑡 𝑑 are equal in 𝐴 ⊗ 𝐵.
Remark 5.12. A summary of the situation: if 𝐴 and 𝐵 are abelian groups, then every
element of 𝐴 ⊗ 𝐵 can be written in the form ∑𝑁

𝑖=1 𝑎𝑖 ⊗𝑡 𝑏𝑖. It’s just that this representation
is highly nonunique, and furthermore given explicit elements 𝑎1, 𝑎2 ∈ 𝐴 and 𝑏1, 𝑏2 ∈ 𝐵 it
might be a hard problem to figure out if 𝑎1 ⊗𝑡 𝑏1 = 𝑎2 ⊗𝑡 𝑏2.

For example, it turns out that (ℤ/2ℤ) ⊗ (ℤ/3ℤ) = 0 and so in this tensor product all the
𝑎 ⊗𝑡 𝑏 are equal to each other and to 0 ⊗ 0.

Having said all of that, one nice property of ℚ̂ is that every tensor is pure; let’s prove
this now.
Lemma 5.13. Every element of ℚ̂ ∶= ℚ ⊗ ℤ̂ can be written as 𝑞 ⊗𝑡 𝑧 with 𝑞 ∈ ℚ and 𝑧 ∈ ℤ̂.
Furthermore one can even assume that 𝑞 = 1

𝑁 for some positive integer 𝑁 .
Proof. A proof I would write on the board would look like the following. Take a general
element of ℚ̂; we know it can be expressed as a finite sum ∑𝑖 𝑞𝑖 ⊗𝑡 𝑧𝑖 with 𝑞𝑖 ∈ ℚ and 𝑧𝑖 ∈ ℤ̂.
Now choose a large positive integer 𝑁 , the lowest common multiple of all the denominators
showing up in the 𝑞𝑖, and then rewrite ∑𝑖 𝑞𝑖 ⊗𝑡 𝑧𝑖 as ∑𝑖

𝑛𝑖
𝑁 ⊗ 𝑧𝑖 with 𝑛𝑖 ∈ ℤ. Now using the

fundamental fact that 𝑛𝑎 ⊗𝑡 𝑏 = 𝑎 ⊗𝑡 𝑛𝑏 for 𝑛 ∈ ℤ, we can rewrite the sum as ∑𝑖
1
𝑁 ⊗𝑡 𝑛𝑖𝑧𝑖

which is equal to the pure tensor 1
𝑁 ⊗ (∑𝑖 𝑛𝑖𝑧𝑖).

In Lean I would prove this using TensorProduct.induction_on, which quickly reduces
us to the claim that the sum of two pure tensors is pure, which we can prove using the above
technique whilst avoiding the general theory of finite sums.
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Be careful though: just because every element of ℚ̂ can be written as 𝑞 ⊗ 𝑧, this repre-
sentation may not be unique. For example 2 ⊗ 1 = 1 ⊗ 2. However, writing 1

𝑁 ⊗𝑡 𝑧 as 𝑧/𝑁
does tempt us into the following definition.

Definition 5.14. If 𝑁 ∈ ℕ+ and 𝑧 ∈ ℤ̂ then we say that 𝑁 and 𝑧 are coprime if 𝑧𝑁 ∈
(ℤ/𝑁ℤ)×. We write 𝑧/𝑁 as notation for the element 1

𝑁 ⊗𝑡 𝑧.

Lemma 5.15. Every element of ℚ̂ can be uniquely written as 𝑧/𝑁 with 𝑧 ∈ ℤ̂, 𝑁 ∈ ℕ+,
and with 𝑁 and 𝑧 coprime.

Proof. Existence: by the previous lemma, an arbitrary element can be written as 𝑧/𝑁 ; let
𝐷 be the greatest common divisor of 𝑁 and 𝑧𝑁 (lifted to a natural). If 𝐷 = 1 then the
fraction is by definition in lowest terms. However if 1 < 𝐷 ∣ 𝑁 then 𝑧𝐷 is the reduction
of 𝑧𝑁 and is hence 0. By lemma 5.9 we deduce that 𝑧 = 𝐷𝑦 is a multiple of 𝐷, and hence
𝑧/𝑁 = 1

𝑁 ⊗𝑡 𝐷𝑦 = 1
𝐸 ⊗ 𝑦, where 𝐸 = 𝑁/𝐷. Now if a natural divided both 𝑦𝐸 and 𝐸 then

this natural would divide both 𝑧𝑁/𝐷 and 𝑁/𝐷, contradicting the fact that 𝐷 is the greatest
common divisors.

Uniqueness: if 𝑧/𝑁 = 𝑤/𝑀 , we deduce 1 ⊗𝑡 𝑀𝑧 = 1 ⊗𝑡 𝑁𝑤, and by injectivity of ℤ̂ → ℚ̂
we deduce that 𝑀𝑧 = 𝑁𝑤 = 𝑦. In particular, if 𝐿 is the lowest common multiple of 𝑀 and
𝑁 then 𝑦𝐿 is a multiple of both 𝑀 and 𝑁 and is hence zero, so 𝑦 = 𝐿𝑥 is a multiple of 𝐿
by 5.9, and we deduce from torsionfreeness that 𝑧 = (𝐿/𝑀)𝑥 and 𝑤 = (𝐿/𝑁)𝑥. If some
prime divided 𝐿/𝑀 then it would have to divide 𝑁 which means that 𝑧 is not in lowest
terms; similarly if some prime divided 𝐿/𝑁 then 𝑤/𝑀 would not be in lowest terms. We
deduce that 𝐿 = 𝑀 = 𝑁 and hence 𝑧 = 𝑤 by torsionfreeness.

If 𝐴 and 𝐵 are additive abelian groups then 𝐴 ⊗ 𝐵 is also an additive abelian group.
However if 𝐴 and 𝐵 are commutative rings, then 𝐴 ⊗ 𝐵 also inherits the structure of a
commutative ring, with 0 = 0 ⊗𝑡 0 and 1 = 1 ⊗𝑡 1. Pure tensors multiply in the obvious
way: the product of 𝑎1 ⊗𝑡 𝑏1 and 𝑎2 ⊗𝑡 𝑏2 is 𝑎1𝑎2 ⊗𝑡 𝑏1𝑏2. There are ring homomorphisms
𝐴 → 𝐴 ⊗ 𝐵 and 𝐵 → 𝐴 ⊗ 𝐵 sending 𝑎 to 𝑎 ⊗𝑡 1 and 𝑏 to 1 ⊗𝑡 𝑏. In general such maps are
not injective, but in the case of ℚ̂ = ℚ ⊗ ℤ̂ both maps from ℚ and ℤ̂ are inclusions.

Lemma 5.16. The ring homomorphism ℚ → ℚ̂ sending 𝑞 to 𝑞 ⊗𝑡 1 is injective.

Proof. We have seen that the map from ℤ to ℤ̂ is injective. Now ℚ is a flat ℤ-module, because
it’s torsion-free, so tensoring up we deduce that the map from ℚ = ℚ ⊗ ℤ to ℚ̂ = ℚ ⊗ ℤ̂ is
also injective. There is no doubt a more elementary proof of this fact.

Lemma 5.17. The ring homomorphism ℤ̂ → ℚ̂ sending 𝑧 to 1 ⊗𝑡 𝑧 is injective.

Proof. The map from ℤ to ℚ is injective, and we have seen that ℤ̂ is a torsion-free and thus
flat ℤ-module, so the map from ℤ̂ to ℚ̂ is also injective.

We can thus identify ℚ = ℚ ⊗ ℤ and ℤ̂ = ℤ ⊗ ℤ̂ with subrings of ℚ̂ = ℚ ⊗ ℤ̂. Note
that, being commutative rings, ℚ and ℤ̂ both contain a copy of ℤ as a subring, and the
corresponding copies of ℤ in ℚ̂ are equal; this is because 1 ⊗ 𝑎 = 𝑎 ⊗ 1 for all 𝑎 ∈ ℤ.

5.7 Additive structure of ℚ̂.
Here we forget the ring structure on everything, and analyse ℚ̂ as an additive abelian group,
and in particular how the subgroups ℤ, ℚ and ℤ̂ sit within it.
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The two results we prove in this section are that ℚ ∩ ℤ̂ = ℤ and that ℚ + ℤ̂ = ℚ̂. Using
lattice-theoretic notation we could write these results as ℚ ⊓ ℤ̂ = ℤ and ℚ ⊔ ℤ̂ = ℚ̂.

Lemma 5.18. The intersection of ℚ and ℤ̂ in ℚ̂ is ℤ.

Proof. Clearly ℤ ⊆ ℚ∩ℤ̂. Now suppose that 𝑥 ∈ ℚ∩ℤ̂. Because 𝑥 is rational we can write it
as 𝐴

𝐵 ⊗𝑡 1 for some fraction 𝐴/𝐵 in lowest terms, and hence 𝑥 = 𝐴/𝐵 where now we regard
𝐴 ∈ ℤ̂ and note that 𝐴/𝐵 is still in lowest terms. However 𝑥 ∈ ℤ̂ implies that 𝑥 = 𝑥/1 is in
lowest terms, so we deduce that 𝐵 = 1 and thus 𝑥 = 𝐴 ∈ ℤ.

Lemma 5.19. The sum of ℚ and ℤ̂ in ℚ̂ is ℚ̂. More precisely, every element of ℚ̂ can be
written as 𝑞 + 𝑧 with 𝑞 ∈ ℚ and 𝑧 ∈ ℤ̂, or more precisely as 𝑞 ⊗𝑡 1 + 1 ⊗𝑡 𝑧.

Proof. Write 𝑥 ∈ ℚ̂ as 𝑥 = 𝑧/𝑁 in lowest terms. Lift 𝑧𝑁 to an integer 𝑡 and observe that
(𝑧 − 𝑡)𝑁 = 0, hence 𝑧 − 𝑡 = 𝑁𝑦 for some 𝑦 ∈ ℤ̂. Now 𝑥 = 𝑡/𝑁 + 𝑦 ∈ ℚ + ℤ̂.

5.8 Multiplicative structure of the units of ℚ̂.
We now forget the additive structure on the commutative ring ℚ̂ and consider the multi-
plicative structure of its group of units ℚ̂× (which I couldn’t get into the section title). We
have the obvious subgroups ℚ×, ℤ× and ℤ̂×.

Lemma 5.20. The intersection of ℚ× and ℤ̂× in ℚ̂× is ℤ×.

Proof. Clearly the intersection is contained within ℚ ∩ ℤ̂ = ℤ. If 𝑛 ∈ ℤ is in ℤ̂× then
𝑛 ≠ 0 and its inverse 1/𝑛 = ±1/|𝑛| is in lowest terms but also in ℤ̂, and hence |𝑛| = 1 by
uniqueness of lowest term representation.

Lemma 5.21. The product of ℚ× and ℤ̂× in ℚ̂× is all of ℚ̂×. More precisely, every element
of ℚ̂× can be written as 𝑞𝑧 with 𝑞 ∈ ℚ× and 𝑧 ∈ ℤ̂×.

Note that by the previous lemma, this representation will be unique up to sign.

Proof. We already know that a general element of ℚ̂× can be written as 𝑥/𝑁 with 𝑁 positive,
so this reduces us to proving that a general element 𝑥 ∈ ℤ̂ which is invertible in ℚ̂× can be
written as 𝑞𝑧 with 𝑞 ∈ ℚ× and 𝑧 ∈ ℤ̂×.

We know 1/𝑥 can be written in lowest terms as 𝑦/𝑀 , and multiplying up we deduce
that 𝑥𝑦 = 𝑀 , and hence 𝑥 divides a positive integer. If 𝑖 ∶ ℤ → ℤ̂ denotes the inclusion,
then we’ve just seen that the preimage of the principal ideal (𝑥), namely, 𝐽 ∶= 𝑖−1(𝑥ℤ̂) is
nonzero, as it contains 𝑀 . Let 𝑔 ∈ 𝐽 be the smallest positive integer; it’s well-known that
𝐽 = (𝑔).

I claim that it suffices to show that 𝑥ℤ̂ = 𝑔ℤ̂. Because knowing 𝑔 = 𝑦𝑥 and 𝑥 = 𝑔𝑧 for
some 𝑦, 𝑧 ∈ ℤ̂ tells us that 𝑔(1 − 𝑦𝑧) = 0, and we know that multiplication by 𝑔 is injective,
hence 𝑦𝑧 = 1, so 𝑧 is a unit and we have written 𝑥 = 𝑔𝑧 with 𝑔 ∈ ℚ× and 𝑧 ∈ ℤ̂×.

It remains to prove the claim. By definition 𝑔 ∈ 𝐽 ⊆ 𝑥ℤ̂ so this is one inclusion. For
the other, it suffices to prove that 𝑥𝑔 = 0. However if 0 < 𝑥𝑔 < 𝑔 lifts 𝑥𝑔 to the naturals
then I claim that 𝑥𝑔 ∈ 𝐽 , for 𝑥𝑔 − 𝑥 is a multiple of 𝑔 and hence of 𝑥, and this contradicts
minimality of 𝑔.

We are nearly ready to embark upon the multiplicative adelic theory for quaternion alge-
bras. However before we do this, we need to develop the theory of the Hurwitz quaternions
a bit more formally.
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5.9 The Hurwitz quaternions
Definition 5.22. The Hurwitz quaternions are the set 𝒪 ∶= ℤ ⊕ ℤ𝜔 ⊕ ℤ𝑖 ⊕ ℤ𝑖𝜔 (as an
abstract abelian group or as a subgroup of the usual quaternions). Here 𝜔 = −1+(𝑖+𝑗+𝑘)

2 and
note that (𝑖+𝑗+𝑘)2 = −3. We have 𝜔 = 𝜔2 = −(𝜔+1). A general quaternion 𝑎+𝑏𝑖+𝑐𝑗+𝑑𝑘
is a Hurwitz quaternion if either 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ or 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ + 1

2 .

Lemma 5.23. The Hurwitz quaternions form a ring.

Proof. Follow your nose.

This ring is isomorphic to ℤ4 as an additive group, and 𝒪 ⊗ℤ ℝ = ℝ ⊕ ℝ𝑖 ⊕ ℝ𝑗 ⊕ ℝ𝜔 is
the usual Hamilton quaternions.

Definition 5.24. There’s a conjugation map (which we’ll call ”star”) from the Hurwitz
quaternions to themselves, sending integers to themselves and purely imaginary elements
like 2𝜔 + 1 to minus themselves. It satisfies (𝑥∗)∗ = 𝑥, (𝑥𝑦)∗ = 𝑦∗𝑥∗ and (𝑥 + 𝑦)∗ = 𝑥∗ + 𝑦∗.
In particular, the Hurwitz quaternions are a ”star ring” in the sense of mathlib.

Definition 5.25. The Hurwitz quaternions come equipped with an integer-valued norm,
which is 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 on 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 but needs to be modified a bit to deal with 𝜔.

Lemma 5.26. We have 𝑁(𝑥) = 𝑥𝑥.

Proof. Easy calculation.

Lemma 5.27. The norm of 0 is 0.

Proof. A calculation.

Lemma 5.28. The norm of 1 is 1.

Proof. A calculation.

Lemma 5.29. The norm of a product is the product of the norms.

Proof. A calculation.

Lemma 5.30. The norm of an element is nonnegative.

Proof. It’s a sum of rational squares.

Lemma 5.31. The norm of an element is zero if and only if the element is zero.

Proof. It’s a sum of rational squares.

Lemma 5.32. Given two Hurwitz quaternions 𝑎 and 𝑏 with 𝑏 nonzero, there exists 𝑞 and 𝑟
such that 𝑎 = 𝑞𝑏 + 𝑟 and 𝑁(𝑟) < 𝑁(𝑏).
Proof. Let 𝑞 be the nearest Hurwitz quaternion to 𝑎/𝑏; one can check that 𝑁(𝑎/𝑏 − 𝑞) < 1
and now everything follows.

Corollary 5.33. All left ideals of 𝒪 are principal.

Proof. Choose a nonzero element of smallest norm.

Remark 5.34. All right ideals are principal too, because there’s another version of Euclid
saying 𝑎 = 𝑏𝑞 + 𝑟.
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5.10 Profinite completion of the Hurwitz quaternions
We define 𝒪 to be 𝒪 ⊗ ℤ̂, so it’s elements 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝜔 with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ̂. The basic thing
we need is this:

Theorem 5.35. If 𝑁 is a positive natural then the obvious map 𝒪 → 𝒪/𝑁𝒪 is surjective.

Proof. This is just four copies of the surjection ℤ → ℤ̂/𝑁ℤ̂. Note that this latter map is
surjective because ℤ → ℤ/𝑁ℤ is surjective, hence given 𝑧 ∈ ℤ̂ you can subtract an integer
𝑤 such that (𝑧 − 𝑤)𝑁 = 0, so 𝑧 − 𝑤 is a multiple of 𝑁 .

We define 𝐷 ∶= ℚ ⊗ 𝒪 = ℚ ⊕ ℚ𝑖 ⊕ ℚ𝑗 ⊕ ℚ𝜔 = ℚ ⊕ ℚ𝑖 ⊕ ℚ𝑗 ⊕ ℚ𝑘. Finally, we define
�̂� ∶= 𝐷 ⊗ ℤ̂. Just as with ℚ̂ we have

Lemma 5.36. Every element of �̂� can be written as 𝑧/𝑁 with 𝑧 ∈ 𝒪 and 𝑁 ∈ ℕ+.

Proof. Same as the proof for ℚ̂.

It is not hard to check that �̂� contains 𝒪 and 𝐷 as subrings, and that as additive abelian
groups we have 𝒪 ∩ 𝐷 = 𝒪 and 𝒪 + 𝐷 = �̂�. This is because 𝒪 is just four copies of ℤ and
we’ve proved the analogous result for ℤ.

However the multiplicative structure is more interesting, especially as 𝐷 is not commu-
tative. For a general quaternion algebra it is not true that (�̂�)× = 𝐷×(𝒪)×, because there
are ”class group obstructions”. The double coset space is some kind of non-commutative
analogue of a class group. However for our particular choice of 𝐷 and 𝒪 the result is true.

Theorem 5.37. The group of units of �̂� is 𝐷×𝒪×. More precisely, every element of �̂�×

can be written as a product 𝛿𝑢 with 𝛿 ∈ 𝐷× and 𝑢 ∈ 𝒪×.

Proof. Given an element 𝑥 of �̂�×, we can use lemma 5.36 to write it as 𝑧/𝑁 with 𝑁 a positive
integer and 𝑧 ∈ 𝒪. Note that 𝑁 is central and in 𝐷×. Similarly, we can write 𝑥−1 as 𝑦/𝑀
with 𝑀 a positive integer and 𝑦 ∈ 𝒪. Then 1 = 𝑥𝑥−1 = 𝑧𝑦/𝑁𝑀 and so 𝑧𝑦 = 𝑁𝑀 = 𝑀𝑁 ,
and 1 = 𝑥−1𝑥 = 𝑦𝑧/𝑀𝑁 so 𝑦𝑧 = 𝑀𝑁 too. In particular 𝑦 both left and right divides a
positive integer.

Now consider the left ideal 𝒪𝑦 generated by 𝑦. We’ve just seen that this ideal has
nontrivial intersection with 𝒪, because it contains 𝑀𝑁 > 0. Hence its intersection with 𝒪
is a nonzero left ideal of 𝒪, which is hence principal by corollary 5.33. Write it as 𝒪𝛼 with
0 ≠ 𝛼 ∈ 𝒪.

It suffices to show that 𝒪𝛼 = 𝒪𝑦. For this would imply that 𝑢𝛼 = 𝑦 and 𝑣𝑦 = 𝛼 for
some 𝑢, 𝑣 ∈ 𝒪 and thus (𝑣𝑢 − 1)𝛼 = 0 and (𝑢𝑣 − 1)𝑦 = 0, and both 𝛼 and 𝑦 are left divisors
of positive integers (the norm of 𝛼, and 𝑀𝑁 respectively), so now using the fact that 𝒪 is
ℤ-torsion-free (is the tensor product of torsion-free abelian groups torsion-free? That would
be a cheap way of doing it. Otherwise use 𝒪 = ℤ4) we deduce that 𝑢 and 𝑣 are units, and
thus 𝑥−1 = 1

𝑀 𝑢𝛼 so 𝑥 = (𝑀𝛼−1)𝑣 ∈ 𝐷×𝒪×.
What remains is this. We have 𝑦 ∈ 𝒪 which left and right divides some positive integer.

We’ve defined 0 ≠ 𝛼 ∈ 𝒪 such that 𝒪𝛼 is the pullback of the abelian group 𝒪𝑦 along the
map 𝒪 → 𝒪. We need to show that when we push this ideal 𝒪𝛼 forwards to 𝒪 we get 𝒪𝑦
again. The fact that 𝒪𝛼 ⊆ 𝒪𝑦 is easy, because 𝛼 ∈ 𝒪𝑦 by definition. So it remains to show
that 𝑦 ∈ 𝒪𝛼.

Let’s define 𝑇 to be a positive integer which is both a left and right multiple of both
𝑦 and 𝛼 (for example 𝑇 = 𝑀𝑁𝛼𝛼 will do). Now note that we have an isomorphism
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𝒪/𝑇 𝒪 = 𝒪/𝑇 𝒪, so we can choose some 𝛽 ∈ 𝒪 such that 𝛽 − 𝑦 ∈ 𝑇 𝒪 is a multiple of 𝑇 . Next
note that 𝛽 ∈ 𝑦 + 𝒪𝑇 ⊂ 𝒪𝑦 is in 𝒪𝑦 ∩ 𝒪 = 𝒪𝛼, meaning 𝛽 = 𝛾𝛼 for some 𝛾 ∈ 𝒪. Hence
𝑦 ∈ 𝛽 + 𝒪𝑇 ⊆ 𝒪𝛼.
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Chapter 6

Stating the modularity lifting
theorems

I think that a nice and accessible goal (which will maybe take a month or two) would be to
state the modularity lifting theorems which we’ll be formalising. There are in fact two; one
(the ”minimal case”) is proved using an extension of the original Taylor–Wiles techniques,
and the other is deduced from it using various more modern tricks which were developed
later. This chapter (currently work in progress) will contain a detailed discussion of all the
things involved in the statement of the theorem.

6.1 Automorphic forms and analysis
Modular forms were historically the first nontrivial examples of automorphic forms, but
by the 1950s or so it was realised that they were special cases of a very general notion
of an automorphic form, as were Dirichlet characters! Modular forms are holomorphic
automorphic forms for the group GL2 /ℚ, and Dirichlet characters are automorphic forms
for the group GL1 /ℚ. It’s possible to make sense of the notion of an automorphic form for
the group 𝐺/𝑘. Here 𝑘 is a “global field” – that is, a field which is either a finite extension of
ℚ (a number field) or a finite extension of (ℤ/𝑝ℤ)(𝑇 ) (a function field), and 𝐺 is a connected
reductive group variety over 𝑘.

The reason that the definition of a modular form involves some analysis (they are holo-
morphic functions) is that if you quotient out the group GL2(ℝ) by its centre and the
maximal compact subgroup 𝑂2(ℝ), you get something which can be naturally identified
with the upper half plane, a symmetric space with lots of interesting differential operators
associated to it (for example a Casimir operator). However if you do the same thing with
GL1(ℝ) then you get a one point set, which is why a Dirichlet character is just a combina-
torial object; it’s a group homomorphism (ℤ/𝑁ℤ)× → ℂ× where 𝑁 is some positive integer.
It turns out that there are many other connected reductive groups where the associated
symmetric space is 0-dimensional, and in these cases the definition of an automorphic form
is again combinatorial. An example would be the group variety associated to the units of
a totally definite quaternion algebra over a totally real field. In this case, the analogue of
GL2(ℝ) would be the units ℍ× in the Hamilton quaternions, a maximal compact subgroup
would be the quaternions of norm 1 (homeomorphic to the 3-sphere 𝑆3) and quotienting out
ℍ× by its centre ℝ× and 𝑆3 again just gives you 1 point.
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Before we talk about quaternion algebras, let’s talk about central simple algebras.

6.2 Central simple algebras
Convention: in this section, fields are commutative, but algebras over a field may not be. An
example of what we are considering below would be Hamilton’s quaternions ℝ⊕ℝ𝑖⊕ℝ𝑗⊕ℝ𝑘
as an algebra over ℝ.

Definition 6.1. A central simple algebra over a field 𝐾 is a nonzero 𝐾-algebra 𝐷 such
that 𝐾 is the centre of 𝐷 and that 𝐷 has no nontrivial two-sided ideals.

Equivalently, every surjective ring homomorphism 𝐷 ↠ 𝐴 to any non-commutative
ring 𝐴 is either an isomorphism, or the zero map to the zero ring. Note that this latter
condition has nothing to do with 𝐾.

Lemma 6.2. If 𝑛 ≥ 1 then the 𝑛 × 𝑛 matrices 𝑀𝑛(𝐾) are a central simple algebra over 𝐾.

Proof. We prove more generally that matrices with coefficients in 𝐾 and indexed by an
arbitrary nonempty finite type are a central simple algebra over 𝐾.

They are clearly an algebra over 𝐾, with 𝐾 embedded via scalar matrices as usual (the
injectivity of the map from 𝐾 comes from nonemptiness of the finite index type). The centre
clearly contains 𝐾; to show that it equals 𝐾, we argue as follows. Let 𝑒(𝑖, 𝑗) be the matrix
with a 1 in the 𝑖th row and 𝑗th column, and zeros everywhere else. An element 𝑍 = (𝑍𝑠,𝑡)𝑠,𝑡
of the centre commutes with all matrices 𝑒(𝑖, 𝑗) for 𝑖 ≠ 𝑗 and these equations immediately
imply that 𝑍𝑖,𝑗 = 0 if 𝑖 ≠ 𝑗 and that 𝑍𝑖,𝑖 = 𝑍𝑗,𝑗.

It suffices to prove that any nonzero two-sided ideal 𝐼 is all of 𝑀𝑛(𝐾). So say 0 ≠ 𝑀 ∈ 𝐼
and let’s fix (𝑖, 𝑗) such that 𝑀𝑖,𝑗 ≠ 0. One easily checks that 𝑀𝑖,𝑗id = ∑𝑘 𝑒(𝑘, 𝑖) × 𝑀 ×
𝑒(𝑗, 𝑘) ∈ 𝐼 (where id ∈ 𝑀𝑛(𝐾) is the identity matrix). Therefore, id ∈ 𝐼 , so 𝐼 = 𝑀𝑛(𝐾).

The definition also requires that the ring be non-zero, but this follows from the index
type being nonempty.

Lemma 6.3. If 𝐷 is a central simple algebra over 𝐾 and 𝐿/𝐾 is a field extension, then
𝐿 ⊗𝐾 𝐷 is a central simple algebra over 𝐿.

Proof. This is not too hard: it’s lemma b of section 12.4 in Peirce’s ”Associative algebras”.
Will maybe write more on Saturday.

Next: define trace and norm.
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Chapter 7

Appendix: A collection of
results which are needed in the
proof.

In this (temporary, unorganised) appendix we list a whole host of definitions and theorems
which were known to humanity by the end of the 1980s and which we shall need. These
definitions and theorems will find their way into more relevant sections of the blueprint once
I have written more details. Note that some of these things are straightforward; others are
probably multi-year research projects. The purpose of this chapter right now is simply to
give the community (and possibly AIs) some kind of idea of the task we face. Note also that
many of the definitions here are yet to be formalised in Lean, and this needs to be done
before we can start talking about formalising theorems.

7.1 Results from class field theory
We start with the local case. In fact we restrict to the 𝑝-adic case, but only for simplicity of
exposition because it’s all we’ll need (and, to be frank, because I’m not 100 percent of what
is true in the function field case).

Let 𝐾 be a finite extension of ℚ𝑝. We write ℤ̂ for the profinite completion of ℤ; it is
isomorphic to ∏𝑝 ℤ𝑝 where ℤ𝑝 is the 𝑝-adic integers and the product is over all primes.

Theorem 7.1. The maximal unramified extension 𝐾𝑢𝑛 in a given algebraic closure of 𝐾 is
Galois over 𝐾 with Galois group “canonically” isomorphic to ℤ̂ in two ways; one of these
two isomorphisms identifies 1 ∈ ℤ̂ with an arithmetic Frobenius (the endomorphism inducing
𝑥 ↦ 𝑥𝑞 on the residue field of 𝐾𝑢𝑛, where 𝑞 is the size of the residue field of 𝐾). The other
identifies 1 with geometric Frobenius (defined to be the inverse of arithmetic Frobenius).

It is impossible to say which of the two canonical isomorphisms is “the most canonical”;
people working in different areas make different choices in order to locally minimise the
number of minus signs in their results.

As a result, the absolute Galois group of 𝐾 surjects onto ℤ̂; its kernel is said to be the
inertia subgroup of this Galois group. Now pull back this surjection along the continuous
map from ℤ (with its discrete topology) to ℤ̂, in the category of topological groups. We
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end up with a group containing the inertia group as an open normal subgroup, and with
quotient isomorphic to the integers.

Definition 7.2. The topological group described above is called the Weil group of 𝐾.

The following theorem is nontrivial.

Theorem 7.3. If 𝐾 is a finite extension of ℚ𝑝 then there are two “canonical” isomorphisms
of topological abelian groups, between 𝐾× and the abelianisation of the Weil group of 𝐾.

Proof. This is the main theorem of local class field theory; see for example the relevant
articles in [4] or many other places.

Note that María Inés de Frutos Fernández and Filippo Nuccio are working on a formal-
isation of the proof of this using Lubin–Tate formal groups.

Now let 𝑀 be an abelian group (with the discrete topology) equipped with a continuous
action of 𝐺𝐾, the Galois group Gal(𝐾sep/𝐾) where we fix an algebraic closure 𝐾 of 𝐾.
Note that if one doesn’t want to choose an algebraic closure of 𝐾 one can instead think of
𝑀 as being an etale sheaf of abelian groups on Spec(𝐾).

Continuous group cohomology 𝐻𝑖(𝐺𝐾, 𝑀) in this setting can be defined using continuous
cocycles and continuous coboundaries, or just as a colimit of usual group cohomology over
the finite quotients of this absolute Galois group (or as etale cohomology, if you prefer). Here
are some of the facts we will need about cohomology in this situation. A nice summary is
that cohomology of a local Galois group behaves like the cohomology of a compact connected
2-manifold. All the theorems below will need extensive planning.

Theorem 7.4. If 𝑀 is finite then the cohomology groups 𝐻𝑖(𝐺𝐾, 𝑀) all finite.

Proof. This is Proposition 14 in section 5.2 of [12].

Theorem 7.5 (”the dimension is 2”). If 𝑀 is torsion then 𝐻𝑖(𝐺𝐾, 𝑀) = 0 if 𝑖 > 2.

Proof. This follows from Proposition 15 in section 5.3 of [12].

Theorem 7.6 (”top degree”). 𝐻2(𝐺𝐾, 𝜇𝑛) is “canonically” isomorphic to ℤ/𝑛ℤ.

Proof. This is also included in Lemma 2 of section 5.2 of [12] (Serre just writes that the
groups are equal; he clearly is not a Lean user. I can see no explanation in his book of this
use of the equality symbol. When the statement of this “theorem” is formalised in Lean it
may well actually be a definition, giving the map).

Theorem 7.7 (”Poincaré duality”). If 𝜇 = ⋃𝑛≥1 𝜇𝑛 and 𝑀 ′ ∶= Hom(𝑀, 𝜇) is the dual of 𝑀
then for 0 ≤ 𝑖 ≤ 2 the cup product pairing 𝐻𝑖(𝐺𝐾, 𝑀)×𝐻2−𝑖(𝐺𝐾, 𝑀 ′) → 𝐻2(𝐺𝐾, 𝜇) = ℚ/ℤ
is perfect.

Proof. This is Theorem 2 in section 5.2 in [12]. Note again the dubious (as far as Lean is
concerned) use of the equality symbol.

Theorem 7.8 (”Euler-Poincaré characteristic”). If ℎ𝑖(𝑀) denotes the order of 𝐻𝑖(𝐺𝐾, 𝑀)
then ℎ0(𝑀) − ℎ1(𝑀) + ℎ2(𝑀) = 0.

If 𝜇∞ denotes the Galois module of all roots of unity in our fixed 𝐾, then one can define
the dual Galois module 𝑀 ′ as Hom(𝑀, 𝜇) with its obvious Galois action.

If 0 ≤ 𝑖 ≤ 2 then the cup product gives us a map 𝐻𝑖(𝐾, 𝑀) × 𝐻2−𝑖(𝐾, 𝑀 ′) →
𝐻2(𝐾, 𝜇∞).
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Theorem 7.9 (Local Tate duality). (i) There is a “canonical” isomorphism 𝐻2(𝐾, 𝜇∞) =
ℚ/ℤ; (ii) The pairing above is perfect.

Proof. This is Theorem II.5.2 in [12].

We now move onto the global case. If 𝑁 is a number field, that is, a finite extension of
ℚ, then let 𝔸𝑓

𝑁 ∶= 𝑁 ⊗ℤ ℤ̂ denote the finite adeles of 𝑁 and let 𝑁∞ ∶= 𝑁 ⊗ℚ ℝ denote the
product of the completions of 𝑁 at the infinite places, so 𝔸𝑁 ∶= 𝔸𝑓

𝑁 × 𝑁∞ is the ring of
adeles of 𝑁 .

Theorem 7.10. If 𝑁 is a finite extension of ℚ then there are two “canonical” isomorphisms
of topological groups between the profinite abelian groups 𝜋0(𝔸×

𝑁/𝑁×) and Gal(𝑁/𝑁)ab; one
sends local uniformisers to arithmetic Frobenii and the other to geometric Frobenii; each of
the global isomorphisms is compatible with the local isomorphisms above.

Proof. This is the main theorem of global class field theory; see for example Tate’s article
in [4].

We need the following consequence:

Theorem 7.11. Let 𝑆 be a finite set of places of a number field 𝐾 . For each 𝑣 ∈ 𝑆 let
𝐿𝑣/𝐾𝑣 be a finite Galois extension. Then there is a finite solvable Galois extension 𝐿/𝐾
such that if 𝑤 is a place of 𝐿 dividing 𝑣 ∈ 𝑆, then 𝐿𝑤/𝐾𝑣 is isomorphic to 𝐿𝑣/𝐾𝑣 as 𝐾𝑣-
algebra. Moreover, if 𝐾avoid/𝐾 is any finite extension then we can choose 𝐿 to be linearly
disjoint from 𝐾avoid.

We also need Poitou-Tate duality; I’ll refrain from writing it down for now, because we
don’t even have Galois cohomology in Lean yet (although we are very close to it).

7.2 Structures on the points of an affine variety.
All rings and algebras in this section are commutative with a 1, and all morphisms send 1
to 1.

Let 𝑋 = Spec(𝐴) be an affine scheme of finite type over a field 𝐾. For example 𝑋 could
be an affine algebraic variety; in fact we shall only be interested in smooth affine varieties in
the applications, but the initial definition and theorem are fine for all finite type schemes.

If 𝑅 is any 𝐾-algebra then one can talk about the 𝑅-points 𝑋(𝑅) of 𝑋, which in this
case naturally bijects with the 𝐾-algebra homomorphisms from 𝐴 to 𝑅.

Definition 7.12. If 𝑋 is an affine scheme of finite type over 𝐾, and if 𝑅 is a 𝐾-algebra
which is also a topological ring, then we define a topology on the 𝑅-points 𝑋(𝑅) of 𝐾 by
embedding the 𝐾-algebra homomorphisms from 𝐴 to 𝑅 into the set-theoretic maps from 𝐴
to 𝑅 with its product topology, and giving it the subspace topology.

Theorem 7.13. If 𝑋 is as above and 𝑋 → 𝔸𝑛
𝐾 is a closed immersion, then the induced map

from 𝑋(𝑅) with its topology as above to 𝑅𝑛 is an embedding of topological spaces (that is, a
homeomorphism onto its image).

Proof. See Conrad’s notes.

We now specialise to the smooth case. I want to make the following conjectural “defini-
tion”:
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Definition 7.14. Let 𝐾 be a field equipped with an isomorphism to the reals, complexes,
or a finite extension of the 𝑝-adic numbers. Let 𝑋 be a smooth affine algebraic variety over
𝐾. Then the points 𝑋(𝐾) naturally inherit the structure of a manifold over 𝐾.

Remark 7.15. Probably this is fine for a broader class of fields 𝐾.

Theorem 7.16. If 𝑋 is as in the previous definition and 𝑋 → 𝔸𝑛
𝐾 is a closed immersion,

then the induced map from 𝑋(𝐾) with its manifold structure to 𝐾𝑛 is an embedding of
manifolds.

Proof. I’m assuming this is standard, if true.

Corollary 7.17. If 𝐺 is an affine algebraic group of finite type over 𝐾 = ℝ or ℂ then 𝐺(𝐾)
is naturally a real or complex Lie group.

Remark 7.18. The corollary, for sure, is true! And it’s all we need. I have not yet made
any serious effort to find a reference for the definition or independence, although there seem
to be some ideas here. As a toy example, one can embed GL𝑛(ℝ) into either ℝ𝑛2+1 via
𝑀 ↦ (𝑀, det(𝑀)−1) or into ℝ2𝑛2 via 𝑀 ↦ (𝑀, 𝑀−1) and the claim is that the two induced
manifold structures are the same.

7.3 Algebraic groups.
The concept of an affine algebraic group over a field 𝐾 can be implemented in Lean as
a commutative Hopf algebra over 𝐾, as a group object in the category of affine schemes
over 𝐾, as a representable group functor on the category of affine schemes over 𝐾, or as a
representable group functor on the category of schemes over 𝐾 which is represented by an
affine scheme. All of these are the same to mathematicians but different to Lean and some
thought should go into which of these should be the actual definition, and which should be
proved to be the same thing as the definition.

Definition 7.19. An affine algebraic group 𝐺 of finite type over a field 𝑘 is said to be
connected if it is connected as a scheme, and reductive if 𝐺𝑘 has no nontrivial smooth
connected unipotent normal 𝑘-subgroup.

7.4 Automorphic forms and representations
This section needs a lot of work; I am just attempting to write down some approximation
to the (well-known) definitions but in great generality (far greater than we need). Some
definitions below are short on details; indeed there may even be errors or imprecisions right
now (because we are working in more generality than I am used to). It will be a very
interesting project to get these details down. One reference (which leaves a lot of exercises)
is Borel-Casselman in [2]. Even stating these definitions will be a big challenge in Lean;
indeed one of the motivations of the project is that it forces us to write down all the below
properly.

Let 𝐺 be a connected reductive group over a number field 𝑁 . We note that 𝐺(𝔸𝑓
𝑁) is a

(locally profinite) topological space and 𝐺(𝑁∞) is a real Lie group; their product is 𝐺(𝔸𝑁).
If 𝑔 ∈ 𝐺(𝔸𝑁), write 𝑔𝑓 ∈ 𝐺(𝔸𝑓

𝑁) for the finite part and 𝑔∞ ∈ 𝐺(𝑁∞) for its infinite part.
For some reason, in the literature people seem to fix a choice of maximal compact sub-

group 𝑈∞ of 𝐺(𝑁∞). I believe that all such subgroups are conjugate, and probably this
gives some route between the different definitions coming from the different choices.
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Example: if 𝐺 = GL2 and 𝑁 = ℚ then 𝑁∞ = ℝ and 𝐺(𝑁∞) is just GL2(ℝ) with its
usual Lie group structure and we can take 𝑈∞ to be 𝑂2(ℝ); 𝐺(𝔸𝑓

𝑁) is the restricted product
of GL2(ℚ𝑝) over GL2(ℤ𝑝), for all primes 𝑝.

By assumption, 𝐺(𝑁∞) admits a finite-dimensional (algebraic) representation 𝜌 with fi-
nite kernel. Consider 𝜌 as taking values in 𝐺𝐿𝑁(ℂ) = Autℂ(𝑉 ). Fix a hermitian sesquilinear
form on 𝑉 which is 𝑈∞ invariant, and now define a norm ||𝑔||𝜌 on 𝐺(𝑁∞) by

||𝑔||𝜌 = (tr 𝜌(𝑔)∗𝜌(𝑔))1/2,

where the asterisk denotes adjoint with respect to the sesquilinear form. According to the
article by Borel–Jacquet in [2] (p189), if 𝜌′ is another such choice then there exists a positive
real 𝐶 and a positive integer 𝑛 such that ||𝑔||𝜌′ ≤ 𝐶||𝑔||𝑛𝜌 for all 𝑔 ∈ 𝐺(𝑁∞).
Definition 7.20. A function 𝑓 ∶ 𝐺(𝑁∞) → ℂ is slowly-increasing if there exists some 𝐶 > 0
and 𝑛 ≥ 1 such that |𝑓(𝑥) ≤ 𝐶||𝑥||𝑛𝜌 .

Theorem 7.21. This is independent of the choice of 𝜌 as above.

Proof. Follows from the above.

We can now give the definition of an automorphic form. For FLT we only need the
definition for 𝐺 being either an abelian algebraic group, or an inner form of 𝐺𝐿(2), but we
have chosen to work in full generality here.

Definition 7.22. An automorphic form is a function 𝜙 ∶ 𝐺(𝔸𝑁) → ℂ satisfying the following
conditions:

• 𝜙 is locally constant on 𝐺(𝔸𝑓
𝑁) and 𝐶∞ on 𝐺(𝑁∞). In other words, for every 𝑔∞,

𝜙(−, 𝑔∞) is locally constant, and for every 𝑔𝑓 , 𝜙(𝑔𝑓 , −) is smooth.

• 𝜙 is left-invariant under 𝐺(𝑁);
• 𝜙 is right-𝑈∞-finite (that is, the space spanned by 𝑥 ↦ 𝜙(𝑥𝑢) as 𝑢 varies over 𝑈∞ is

finite-dimensional);

• 𝜙 is right 𝐾𝑓-finite, where 𝐾𝑓 is one (or equivalently all) compact open subgroups of
𝐺(𝔸𝑓

𝑁);
• 𝜙 is 𝑧-finite, where 𝑧 is the centre of the universal enveloping algebra of the Lie algebra

of 𝐺(𝑁∞), acting via differential operators. Equivalently 𝜙 is annihiliated by a finite
index ideal of this centre, so morally 𝜙 satisfies lots of differential equations of a certain
type;

• For all 𝑔𝑓 , the function 𝑔∞ ↦ 𝜙(𝑔𝑓𝑔∞) is slowly-increasing in the sense above.

Automorphic forms form a typically infinite-dimensional vector space.

Definition 7.23. An automorphic form is cuspidal (or “a cusp form”) if it furthermore
satisfies ∫𝑈(𝑁)\𝑈(𝔸𝑁) 𝜙(𝑢𝑥)𝑑𝑢 = 0, where 𝑃 runs through all the proper parabolic subgroups
of 𝐺 defined over 𝑁 and 𝑈 is the unipotent radical of 𝑃 , and the integral is with respect to
the measure coming from Haar measure.

The cuspidal automorphic forms form a complex subspace of the space of automorphic
forms.
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Definition 7.24. The group 𝐺(𝔸𝑁) acts on itself on the right, and this induces a left action
of its subgroup 𝐺(𝔸𝑓

𝑁) × 𝑈∞ on the spaces of automorphic forms and cusp forms. The Lie
algebra 𝔤 of 𝐺(𝑁∞) also acts, via differential operators. Furthermore the actions of 𝔤 and
𝑈∞ are compatible in the sense that the differential of the 𝑈∞ action is the action of its Lie
algebra considered as a subalgebra of 𝔤. We say that the spaces are (𝐺(𝔸𝑓

𝑁)×𝑈∞, 𝔤)-modules.

Theorem 7.25. The cusp forms decompose as a (typically infinite) direct sum of irreducible
(𝐺(𝔸𝑓

𝑁) × 𝑈∞, 𝔤)-modules.

Definition 7.26. A cuspidal automorphic representation is an irreducible (𝐺(𝔸𝑓
𝑁)×𝑈∞, 𝔤)-

module isomorphic to an irreducible summand of the space of cusp forms.

For non-cuspidal representations, they do not decompose as a direct sum; there is a
continuous spectrum which decomposes as a direct integral. We may not ever need these.
As a result the definition of an automorphic representation has to be slightly modified in
the non-cuspidal case.

Definition 7.27. An automorphic representation is an irreducible (𝐺(𝔸𝑓
𝑁) × 𝑈∞, 𝔤)-module

isomorphic to an irreducible subquotient of the space of automorphic forms.

Admissibility is a finiteness condition on an irreducible representation of (𝐺(𝔸𝑓
𝑁)×𝑈∞, 𝔤);

automorphic representations are admissible, and this seems to boil down to theorems of
Godement and Harish-Chandra in the general case.

Theorem 7.28. An irreducible admissible (𝐺(𝔸𝑓
𝑁) × 𝑈∞, 𝔤)-module is a restricted tensor

product of irreducible representations 𝜋𝑣 of 𝐺(𝑁𝑣) as 𝑣 runs through the finite places of
𝑁 , tensored with a tensor product of irreducible (𝔤𝑣, 𝑈∞,𝑣)-modules as 𝑣 runs through the
infinite places of 𝑁 . The representations 𝜋𝑣 are unramified for all but finitely many 𝑣.

Proof. See Flath’s article in [3].

As mentioned above, we only need all of this for abelian algebraic groups and for inner
forms of GL2 over totally real fields, where everything can be made more concrete (and in
particular where I can write down concrete definitions, although this still needs to be done).
In particular, we don’t strictly speaking need all of the above, we could just cheat and deal
with GL2(ℝ) and ℍ× separately.

The theorems I need are: Jacquet-Langlands for inner forms of GL2 over totally real
fields, and multiplicity 1 for these inner forms. We also need cyclic base change plus clas-
sification of image, all for totally definite quaternion algebras, and we need automorphic
induction from GL1(𝐾) to GL2(𝐹) when 𝐾/𝐹 is a degree 2 totally imaginary extension.
There seems to be little point formalising the statements of the theorems if we cannot yet
even formalise the definition of an automorphic representation properly.

7.5 Galois representations
Ivan Farabella has formalised the definition of a compatible family of Galois representations,
modulo the existence of Frobenius elements, which has been established by Jou Glasheen.

Definition 7.29. Let 𝑁 be a number field. A compatible family of 𝑑-dimensional Galois
representations over 𝑁 is a finite set of finite places 𝑆 of 𝑁 , a number field 𝐸, a monic
degree 𝑑 polynomial 𝐹𝔭(𝑋) ∈ 𝐸[𝑋] for each finite place 𝔭 of 𝐾 not in 𝑆 and, for each prime
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number ℓ and field embedding 𝜙 ∶ 𝐸 → ℚℓ (or essentially equivalently for each finite place
of 𝐸), a continuous homomorphism 𝜌 ∶ Gal(𝐾sep/𝐾) → GL2(ℚℓ) unramified outside 𝑆 and
the primes of 𝐾 above ℓ, such that 𝜌(Frob𝔭) has characteristic polynomial 𝑃𝜋(𝑋) if 𝜋 lies
above a prime number 𝑝 ≠ ℓ with 𝑝 ∉ 𝑆.

The big theorem, which again we are far from even stating right now, is

Theorem 7.30. Given an automorphic representation 𝜋 for an inner form of GL2 over a
totally real field and with reflex field 𝐸, such that 𝜋 is weight 2 discrete series at every infinite
place, there exists a compatible family of 2-dimensional Galois representations associated to
𝜋, with 𝑆 being the places at which 𝜋 is ramified, and 𝐹𝔭(𝑋) being the monic polynomial
with roots the two Satake parameters for 𝜋 at 𝔭.

7.6 Algebraic geometry
We have already mentioned Mazur’s Theorem on torsion subgroups of elliptic curves (the-
orem 3.27). The proof of this is the main theorem of [9], 150 pages of subtle arithmetic
geometry involving the bad reduction of modular curves, exotic cohomology theories (etale
and more), and the consequences of this for the Neron models of their Jacobians. After a
beautiful introductory chapter containing a history and examples, the convention is estab-
lished that throughout the paper, 𝑁 will denote a prime number which is at least 5. And
then the first sentence of chapter 1 of the paper proper is “Consider quasi-finite separated
commutative group schemes of finite presentation over the base 𝑆 ∶= Spec ℤ which are finite
flat group schemes over 𝑆′ ∶= Spec(𝑍[1/𝑁]).”. At the time of writing (May 2024), Lean’s
algebraic geometry cannot get us through the first sentence of Mazur’s proof, which occu-
pies pages 43 to 172 of the paper (not including the appendix or references, that’s just the
proof). Anyone interested in formalising Mazur’s paper should make a formalisation of its
first sentence their first milestone.

Talking of modular curves, we also need the existence of Shimura curves and surfaces over
totally real fields 𝐹 (of degree greater than 2, so always compact). The curves are ”modeles
étranges” in the sense of Deligne, so we also need moduli spaces of unitary Shimura varieties
over CM extensions. We need to decompose the first and second etale cohomology groups of
these varieties into Galois representations, by understanding them in terms of automorphic
representations.

Definition 7.31. We need the definition of (the canonical model over 𝐹 of) the Shimura
curve attached to an inner form of GL2 with precisely one split infinite place, and the same
for the Shimura surface associated to an inner form split at two infinite places (and ramified
elsewhere, so it’s compact).

We also need Moret-Bailly’s theorem from [10]:

Theorem 7.32. Let 𝐾avoid/𝐾 be a Galois extension of number fields. Suppose also that 𝑆
is a finite set of places of 𝐾. For 𝑣 ∈ 𝑆 let 𝐿𝑣/𝐾𝑣 be a finite Galois extension. Suppose also
that 𝑇 /𝐾 is a smooth, geometrically connected curve and that for each 𝑣 ∈ 𝑆 we are given
a nonempty, Gal(𝐿𝑣/𝐾𝑣)-invariant, open subset Ω𝑣 ⊆ (𝐿𝑣). Then there is a finite Galois
extension 𝐿/𝐾 and a point 𝑃 ∈ 𝑇 (𝐿) such that

• 𝐿/𝐾 is Galois and linearly disjoint from 𝐾avoid over 𝐾;

• if 𝑣 ∈ 𝑆 and 𝑤 is a prime of 𝐿 above 𝑣 then 𝐿𝑤/𝐾𝑣 is isomorphic to 𝐿𝑣/𝐾𝑣;
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• and 𝑃 ∈ Ω𝑣 ⊆ 𝑇 (𝐿𝑣) ≅ (𝐿𝑤) via one such 𝐾𝑣-algebra morphism (this makes sense as
Ω𝑣 is Gal(𝐿𝑣/𝐾𝑣)-invariant).

Note that we do not even have the definition of a curve over a field in Lean.

7.7 Algebra
We need the classification of finite subgroups of PGL2(𝔽𝑝). The answer is that they are all
cyclic, dihedral, 𝐴4, 𝑆4, 𝐴5, or isomorphic to PSL2(𝑘) or PGL2(𝑘) for some finite field of
characteristic 𝑝. This should at least be easy to state!
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