DinoSoft Documentation
DinoSoft is a Python library for paleontological data analysis, specializing in dinosaur fossil processing and ecological modeling.
Documentation Types
Tutorials
Learn DinoSoft step-by-step
How-To Guides
Task-focused guides for specific goals
Reference
Complete API and configuration documentation
Roadmap
Understand roadmap and support options
Key Features
Fossil Analysis
Process and analyze fossil specimens using our advanced ML pipeline
Genetic Studies
DNA preservation analysis and ancient genome reconstruction
Morphology
Complete morphological analysis and comparison tools
Statistics
Statistical analysis and visualization tools
Getting Started with DinoSoft
This tutorial will guide you through your first fossil analysis using DinoSoft.
import dinosoft as ds
# Load a fossil specimen
specimen = ds.load_specimen('KU45690')
analysis = ds.analyze_specimen(specimen)
ds.visualize(analysis)
Next Steps
Once you've completed your first analysis, learn about:
Core Features Reference
DinoSoft offers three primary data structures:
Species
Represents a single dinosaur species with complete taxonomic and ecological data
tyrannosaurus = ds.Species({
"name": "Tyrannosaurus rex",
"period": "Late Cretaceous",
"diet": "Carnivore",
"mass_kg": 7000
})
Population
Models population dynamics and ecological interactions
Period
Creates a period using standardized geological time periods
custom_period = ds.Period(
"Late Triassic", # Start of period
"Late Cretaceous",
freq="1Ma" # 1 million year intervals
)
Configuration Reference
Create dinosoft.yml
in your project root:
analysis:
settings:
precision: high # Analysis precision
units: metric # Measurement units
visualization:
style: journal # Publication style
colormap: viridis # Default colormap
Keyboard Shortcuts
Action | Windows/Linux | MacOS |
---|---|---|
Reset Analysis | Ctrl+R | Cmd+R |
Export Results | Ctrl+E | Cmd+E |
Quick Save | Ctrl+S | Cmd+S |
Installing DinoSoft
This guide walks you through installing DinoSoft for your needs.
System Requirements
Prerequisites:
- Python 3.8 or higher
- 4GB RAM minimum
- CUDA-compatible GPU recommended
Installation Methods
pip (Recommended)
Set up a virtual environment, or if done simply run pip
.
Available extras:
pip install dinosoft[viz] # Visualization tools
pip install dinosoft[ml] # Machine learning features
pip install dinosoft[full] # All optional dependencies
conda
Development
Common Issues:
- ImportError: Check Python version compatibility
- GPU not detected: Verify CUDA installation
- Memory Error: Increase available RAM
Using DinoSoft
This guide shows you how to perform common tasks with DinoSoft.
Basic Usage
import dinosoft as ds
def analyze_fossil_record(specimen):
"""Process paleontological data"""
extinction_dates = ds.timeline.mass_extinctions
diet_analysis = ds.classify_diet(specimen)
territory = ds.calculate_territory(specimen.size)
return ds.Species(
specimen.name,
diet_analysis,
territory,
extinction_dates.nearest(specimen.period)
)
Advanced Examples
Species Analysis
# Load and analyze a specimen
specimen = ds.load_specimen(
"USNM 555000", # Smithsonian specimen ID
precision="high" # Use high-precision analysis
)
Population Modeling
# Create a population model
pop = ds.Population(
species=specimen,
territory_km2=1000,
prey_density=0.5
)
Visualization
import matplotlib.pyplot as plt
# Create publication-ready plots
fig, ax = plt.subplots()
ds.plot_territory_range(
specimen,
ax=ax,
style='journal'
)
Error Handling
try:
result = analyze_fossil_record(specimen)
except ds.errors.InvalidPeriodError as e:
# Handle invalid geological periods
logger.error(f"Invalid time period: {e}")
except ds.errors.SpecimenError as e:
# Handle specimen-related errors
logger.error(f"Specimen error: {e}")
Roadmap and Support
API Status
- DONE Core Analysis Engine
- DONE Data Import/Export
- WIP Neural Networks1
- WIP Web Interface
Version History:
- 1.2.0: Added machine learning models
- 1.1.0: Improved analysis speed
- 1.0.0: Initial release
Support
Need Support?
-
Coming in version 2.0 ↩